
A MARSHALL CAVENDISH 1 1 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 1 	 No 11

MACHINE CODE 12

ASSEMBLING BY HAND-2 	 321

Some useful routines on which to practise

APPLICATIONS 7

VC;;TPTITER TYPING TUTOR-2 	328 I
Add the rest of the letter keys to your repertoire

BASIC PROGRAMMING 23

SHORTENING PROGRAMS 	 333

Keep your listings clear, but economical

BASIC PROGRAMMING 24

ETTINGIID 0F 	3. 4 ,1
How to find those frustrating errors

BASIC PROGRAMMING 25

HOW TO MERGE PROGRAMS 	 339

Joining programs to get the best of both

GAMES PROGRAMMING 11

A MOVING ADVENTURE 	 344

Start exploring the adventure world

BASIC PROGRAMMING 26

DRAGON/TANDY 	GRAPHICS 350 I
Moving your colour UDGs

PICTURE CREDITS
Front cover, Howard Kingsnorth. Pages 321, 322, 324, 326, Peter Richardson.
Pages 328, 330, Kuo Kang Chen. Page 331, Nick Farmer. Page 333, Malcolm
Livingstone. Page 334, Tudor Art Studios. Page 336, Bernard Fallon. Pages 337,
338, Howard Kingsnorth. Page 339, Paul Chave. Page 340, Mick Saunders. Page
343, Peter Western. Pages 344, 346, 347, 348, Alan Baker. Page 350, Jon
Stewart/Roy Flukes. Page 351, Bernard Fallon.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.45) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Gordon and Gotch
Ltd, PO Box 213, Alexandria, NSW
2015
New Zealand: See inserts for details,
or write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from
local newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Copies of any part of INPUT can be obtained from the following addresses at the
regular cover price, with no extra charge for postage and packing:
UK and Republic of Ireland:

INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent

COPIES BY POST
Our Subscription Department can supply your copies direct to you regularly at £1.00
each. For example the cost of 26 issues is £26.00; for any other quantity simply
multiply the number of issues required by £1.00. These rates apply anywhere in the
world. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HONYTO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries—and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable forthe SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
48K,128, and + 1 %.4', COMMODORE 64 and 128

EA' ACORN ELECTRON,
BBC B and B+ 	waft". DRAGON 32 and 64

UM 	VIC 20 	TCOL:YUR COMPUTER

■ PRACTISE YOUR ASSEMBLY
■ A ROUTINE TO SCROLL

THE SCREEN SIDEWAYS
■ UNDERSTANDING HOW THE

PROGRAM WORKS

Once you have learnt to assemble by
hand, the world of home computing
is your oyster. You should already
have a knowledge of BASIC, you can
handle machine code and translating
assembly language into machine
code will be no problem

In the first part of this article on hand assembly
you learnt how to convert assembly language
into machine code so that you could enter it
into your computer and execute it.

With this mastered, you have a chance to try
out these techniques on some useful routines.

SIDEWAYS SCROLLING
The following assembly language programs
scroll the screen to the left and to the right one
character square. Hand-assemble them and
feed the machine code into your computer
using your machine code monitor program. If
you want to save these programs for use in the
future don't forget to put them into different
parts of memory in case you want to use them
both at the same time.

Both programs work independently of their
position in memory so you can put them any-
where convenient on your machine.

If you want the screen to scroll to the left or
to the right by more than one character square
you can call the machine code routine out of a
FOR . . . NEXT loop. Or to make it scroll just
when you press a key, call it out of a BASIC
program using INKEY$ or GET$ (see page 132).

This routine scrolls the screen to the left. Here
it has been translated into machine code.

Id de,16384 	 11 00 40
Id h1,16385 	 21 01 40
Id b,192 	 06 CO

loop push bc 	 C5
Id a,(de) 	 1A
Id bc,31 	 01 1F 00
Idir 	 ED B0
Id (de),a 	 12
inc de 	 13
inc hl 	 23
pop bc 	 C1
djnz loop 	 10 F3
ret 	 C9

HOW IT WORKS
The Id de,16384 and Id h1,16385 load the
addresses of the first two bytes of the
Spectrum's screen display file into the DE and
HL registers. The Id b,192 loads the B register
with the number 192—there are 192 lines on
the Spectrum's screen and the B register is
to be used as a counter to count off the lines.

The problem is the B register is going to be
used for other things as well, so for the
moment, its contents are going to be stored on
the stack. But the stack command won't take
the B register on its own, only the B and C
registers together. So push be is used. It
doesn't matter what is in the C register at this
point because, in this operation, we are not
going to look at the C register.

The Id a,(de) loads the accumulator with
the contents of the memory location whose
address is in the DE register-16384, remem-
ber. This is an example of indirect addressing.

The Id bc,31 loads the BC register with the
number 31. There are 32 character squares in a
line but shifting the first one into the last
position is done independently. So for this
operation you only need to count up to 31.

The crucial instruction here is Idir. This
means load, increment and repeat. What it
does is load the contents of the memory
location whose address is in the HL register-
16385 on the first pass—into the memory
location whose address is contained in DE-
16384 on the first pass. Then it increments HL
and DE, decrements BC, checks if the BC is
zero—if it is not the whole instruction is
repeated.

The effect of this is to move what is in the
second screen location into the first, then the
third into the second, and so on all the way
along the first row. It stops when the BC
register has counted down from 31 to 0. The
last operation it does is move the 32nd screen
location into the 31st position. But then when
the BC register is decremented, it becomes 0
and the program moves on to the next
instruction.

The Id (de),a puts the contents of the

accumulator into the address pointed to by the
DE register. Looking back you will see that the
accumulator contains the contents of the DE
register before the Idir instruction started
incrementing it—in other words the contents
of 16384, the first screen location.

The DE register has been repeatedly in-
cremented since then though. It now points to
the last screen location—the exact position you
want to slot the contents of the first screen
location into.

The inc hl and inc de increment the HL and
the DE registers so they are set up at the
beginning of the next line. As you swapped the
contents of the first location into the last by
hand (as it were) you have to increment these
two registers yourself, rather than allow the
Idir instruction to do it for you.

The pop bc pulls the contents of the two

memory addresses at the top of the stack and
puts them back into the B and C registers. djnz
decrements the B register and jumps if its
contents are not zero. At the beginning of the
first pass you loaded the B register with 192.
This was then stored on the stack while you
did other things with the B and C registers.
The djnz decrements the B register to 191 after
the first pass. This is not zero, so the instruc-
tion jumps back to the first appearance of the
label it's been given, loop.

This jump will occur over and over again
while the instruction is counting down from
192 to 0—dealing with a line of the screen at a
time. When the B register does become 0 after
it has been decremented by the djnz instruc-
tion the jump is not made and the program
goes on to the next instruction.

The ret means return. No machine code

subroutine will run without a return instruc-
tion, otherwise it will not return to the BASIC.
The microprocessor will then plough on into
any rubbish that follows your machine code
program in memory. The chances are that the
program will then crash and memory will be
corrupted.

Even if this doesn't happen, the micropro-
cessor will career on out of the top of memory
and back into the bottom. There it will hit the
initializing routines which will clear out the
memory anyway. So remember the importance
of ret.

Now try hand assembling the routine which
follows to scroll the screen to the right
yourself.

Id de,22527
Id h1,22526
Id b,192

loop push bc
Id a,(de)
Id bc,31
Iddr
Id (de),a
dec hl
dec de
pop bc
djnz loop
ret

This program, you notice, starts at the end of
the screen display file, and works backwards
through it. The only other thing that is
different from the previous program is the Iddr
instruction. This means load, decrement and
repeat. This loads the contents of the memory
location whose address is contained in HL into
the memory location whose address is in DE
again. But then it decrements HL and DE. It

decrements BC, like the Idir instruction, and
again repeats if the BC registers do not contain
0.

The jump is the same length as before. So
you can check you've worked the label out
correctly by looking back at the machine code
listing above. (Remember to count the bytes
from the end of the jump instruction, that is
including the jump byte you are working out.)

a
This assembly language routine scrolls the
screen to the left on any ZX81 which has an 8K
or 16K RAM pack attached. Here it has been
translated into machine code for you.

LD DE,(16396) 	ED 5B OC 40
INC DE 	 13
LD H,D 	 62
LD L,E 	 6B
INC HL 	 23
LD B,24 	 06 18

LOOP PUSH BC 	 C5
LD A,(DE) 	 1A
LD BC,31 	 01 IF 00
LDIR 	 ED BO
LD (DE),A 	 12
INC HL 	 23
INC HL 	 23
INC DE 	 13
INC DE 	 13
POP BC 	 C1
DJNZ LOOP 	 10 Fl
RET 	 C9

HOW IT WORKS
The display file in the ZX81 is not in a fixed
place, but the pointer in memory locations
16396 and 16397 contain the address of the
first screen location. The instruction LD
DE, (16396) loads the D and E registers with the
contents of 16396 and 16397—the contents of
16396 go in the E register and the contents of
16397 go in the D register, following the Z80's
low-high convention. The program now
knows where to start its scrolling routine.

The ZX81's screen display is also construc-
ted rather differently from that of other ma-
chines. It has a new-line symbol at the begin-
ning of every line (though it does not appear on
the screen). These are there so that the display
file can shrink to take up the minimum
possible space in the ZX81's unexpanded 1K
memory. If nothing is being displayed on the
screen, the display file can shrink to just the 24
new-line characters, marking where each line
should begin.

In the expanded versions, these new-line
characters are left at the end of each line. The
problem is that you must not interfere with
these otherwise the computer will crash.

The first character on the screen—reading
from the top left—is a new-line character. To
avoid interfering with it, the instruction INC DE
INCrements the DE register pair which moves
the program on to the second screen location.

The two instructions LD H,D and LD L,E
copy the contents of the DE register pair into
the HL register pair. And INC HL increments
the HL register pair to give the address of the
third screen location.

LD B,24 loads the B register with the
number 24. There are 24 lines on the ZX81's
screen display and the B register is going to act
as a counter. But the B register is going to be
used for other things as well. So for the
moment its contents are going to be put on to
the stack with the instruction PUSH BC.

PUSH actually pushes both the B and the C
register on to the stack together. But there is no
instruction that pushes the B register on to the
stack on its own. Anyway it doesn't much
matter what is in the C register at this point as
it does not affect the B register which is being
used as the counter in any way.

LD A,(DE) loads the accumulator with the
contents of the memory location whose ad-
dress is in the DE register pair—in other words
the contents of the second screen location,
remember. Then LD BC,31 loads the BC
registers with the number 31. There are 33
characters on a ZX81 line, but the first one, as
you know, is a new-line character. And when
the characters are shifted along one square to
scroll them, this operation only has to be done
31 times. The other one character square has
to be shifted from one end of the line to the
other which is done in a separate operation.

The crucial instruction here is LDIR. This
means LoaD, Increment and Repeat. What it
does is load the contents of the memory
location whose address is in HL—the third
screen location on the first pass—into the
memory location whose address is contained in
DE—the second memory location on the first
pass. Then it increments HL and DE, decre-
ments BC and checks to see if BC is zero—if it
is not the whole instruction is repeated.

The effect of this is to move what is in the
third screen location into the second, then the
fourth into the third, and so on all the way
along the first row. It stops when the BC
register has counted down from 31 to 0. The
last operation it does is move the contents of
the 33rd screen location into the 32nd position.
After that when the BC register is decremented
its contents become zero and the program
moves onto the next instruction.

LD (DE),A puts the contents of the ac-
cumulator into the address pointed to by the
DE registers and is the complement of the
instruction LD A,(DE) used earlier. That in-

struction was used to store the contents of the
second screen location in the accumulator.

Now, the contents of the second screen
location are put back into the screen location
pointed to by DE. But in the meantime DE has
been incremented 31 times by the LDIR in-
struction, so now it points to the last screen
location on the line—which is exactly where
we want to put the contents of the second
screen location if the scrolling routine is going
to wrap around.

INC HL and INC DE increment the HL and DE
registers. This is done once to move the
program onto the next line of the screen, and a
second time to avoid interfering with the new-
line character at the beginning of the line.

POP BC pulls the contents of the top two
memory locations back off the stack and puts
them into the BC registers. In other words it
sets up the B register counter again.

DJNZ Decrements the B register and Jumps
if its contents are Not Zero. To start with the B
register was loaded with 24. This number was
then stored on the stack, then pulled back

again. Now it is decremented to 23. This is not
zero so the instruction executes the jump—and
the computer jumps back in the program to
where it encounters the label LOOP again.

This jump will occur over and over again. It
sends the computer back to execute the loop
while the counter counts down from 24 to 0,
getting it to go through the character-shift
routine a line at a time. When the contents of
the B register do become 0, the jump is not
executed and the computer moves on to the
next instruction.

RET means RETurn. No machine code sub-
routine will run safely without a return in-
struction, as the computer will not return to
BASIC. The microprocessor will then plough
on into any rubbish that follows your machine
code program in memory. The chances are
that the program will then crash and the
memory will be corrupted.

Now try hand assembling this routine, to
scroll the screen to the right, yourself. (Don't
forget to convert the numbers and addresses
into hexadecimal values):

LD HL,(16396)
LD DE,790
ADD HL,DE
LD D,H
LD E,L
INC DE
LD B,24

LOOP PUSH BC
LD A,(DE)
LD BC,31
LDDR
LD (DE),A
DEC HL
DEC HL
DEC DE
DEC DE
POP BC
DJNZ LOOP
RET

This program starts at the end of the display
file and works backwards through it. To do
that we have to load the contents of the screen
pointer into DE again, with the instruction LD

DE,(16396), then add 790 to it-790 is the
number of character squares there are on the
ZX81's screen, minus 2. Because the screen
pointer points to the first screen location, the
last one is that number plus the number of
screen locations minus 1. But the first charac-
ter square that is going to be moved is the one
before that so another 1 is subtracted.

The instruction which does the addition is
ADD HL,DE. This adds the contents of HL and
DE and puts the result into HL. The program
then goes on exactly the same as before until
you get to the LDDR instruction. This is very
similar to the LDIR instruction, except that
LDDR LoaDs, Decrements and Repeats. In other
words it loads the contents of the memory
location whose address is contained in HL into
the memory location whose address is in DE
again, but then it decrements HL and DE,
decrements BC again and repeats if the BC
register does not contain zero.

The jump is the same length as before, so
you can check that you have worked it out
properly by referring back to the machine code

listing above. (Remember to count the bytes
from the end of the jump instruction.)

IgX1.111111=
This assembly language routine scrolls the
screen to the left. Here it has been translated
into machine code for you.

LDA # &00 	 A9 00
STA &FB 	 85 FB
LDA # &04 	 A9 04
STA &FC 	 85 FC
LDA # &00 	 A9 00
STA &FE 	 85 FE

AGAIN LDY # &00 	 AO 00
LDA (&FB),Y 	 B1 FB
STA &FD 	 85 FD
LDY # &01 	 AO 01

LOOP LDA (&FB),Y 	 B1 FB
DEY 	 88
STA (&FB),Y 	 91 FB
I NY 	 C8
I NY 	 C8
CPY # &28 	 CO 28
BNE LOOP 	 DO F5
LDY # &27 	 AO 27
LDA &FD 	 A5 FD
STA (&FB),Y 	 91 FB
LDA &FB 	 AS FB
ADC # &27 	 69 27
STA &FB 	 85 FB
BCC JUMP 	 90 02
INC &FC 	 E6 FC

JUMP INC &FE 	 E6 FE
LDX &FE 	 A6 FE
CPX # &19 	 E0 19
BNE AGAIN 	 DO D5
RTS 	 60

LDA # &00 	 A9 00
STA &FB 	 85 FB
LDA # &1 E 	 A9 1E
STA &FC 	 85 FC
LDA # &00 	 A9 00
STA &FE 	 85 FE

AGAIN LDY # &00 	 AO 00
LDA (&FB),Y 	 B1 FB
STA &FD 	 85 FD
LDY # &01 	 AO 01

LOOP LDA (&FB),Y 	 B1 FB
DEY 	 88
STA (&FB),Y 	 91 FB
I NY 	 C8
I NY 	 C8
CPY # &16 	 CO 16
BNE LOOP 	 DO F5
LDY # &15 	 AO 15
LDA &FD 	 A5 FD

STA (&FB),Y 	 91 FB
LDA &FB 	 AS FB
ADC # &15 	 69 15
STA &FB 	 85 FB
BCC JUMP 	 90 02
INC &FC 	 E6 FC

JUMP INC &FE 	 E6 FE
LDX &FE 	 A6 FE
CPX # &17 	 E0 17
BNE AGAIN 	 DO D5
RTS 	 60

HOW IT WORKS
LDA # &00 loads 0 into the accumulator and
STA &FB stores it at memory location 00FB.
Similarly, LDA # &04 and STA &FC store 04 on
the 64 and LDA # ME and STA &FC store 1 E on
the Vic in memory location 00FC, via the
accumulator. There is no command to store
data directly into a memory location.

0400 is the address of the first screen
location on the 64 and 1 E is the address of the
first screen location on the Vic. 00FB and 00 FC
are two locations on the part of the user's
workspace on the zero page. The zero page is
used as locations there only require a one byte
address.

Again, LDA # &00 and STA &FE load 0 into
memory location 00FE. This is going to be
used as a counter.

LDY # &00 loads the index register with the
first offset-0 naturally, as the scrolling
program is to begin at the start of the screen.
The LDA (&FB),Y loads the accumulator with
the contents of the memory location given by
00FB, and the next byte 00FC, plus an offset
given by the contents of the Y register. 00F6
and 00FC point to 0400 on the 64 and 1 E00 on
the Vic, the start of the screen and the offset is
0, so this instruction feeds the contents of the
first character square into the accumulator.
STA &FD then stores it in 00FD.

Next, LDY # &01 loads the Y register with 1.
LDA (&FB),Y then loads the accumulator with
the contents of the memory location whose
address is given by 00F6 and 00FC plus an
offset given by the contents of the Y register
again. But this time, the Y register contains 1
instead of 0. So this instruction loads the
accumulator with the contents of 0401 on the
64 and 1 E01 on the Vic, which is the second
screen location.

DEY Decrements the Y register and STA
(&FB),Y stores the contents of the accumulator
into the address given by 00FB, 00FC and the
offset in Y. As Y has been decremented by 1 in
the process, this has the effect of shifting the
contents of each memory location along one.

The Y register is then INcremented twice by
the instruction INY, preparing it to point to the
next screen location. CPY # &28 ComPares the

contents of the Y register with 28 hex, or 40 in
decimal on the 64. There are 40 columns on
the Commodore 64's screen. CPY # &28 sets
the zero flag if the contents of the Y register is
40 decimal.

CPY # &16 compares the contents of the Y
register with 16 hex, or 22 decimal, on the Vic.
There are 22 columns on the Vic's screen. CPY
&16 sets the zero flag if the contents of the Y
register is 22 decimal.

BNE LOOP checks the zero flag. If it is not
set, the microprocessor branches back to
where. the LOOP label occurred before and
starts that section again.

BNE is the Branch if Not Equal instruction,
and it will continue to send the microprocessor
back round the loop as the Y register counts up
from 1 to 40 on the 64, from 1 to 22 on the Vic,
and moves each of the character squares along
one row. When the contents of the Y register
reaches 40 on the Commodore 64, or when it
reaches 22 on the Vic, the BNE condition is not
fulfilled and the microprocessor goes onto the
next instruction.

LDY # &27 loads the Y register with 27 hex
or 39 decimal on the 64 and LDY # &15 loads
the Y register with 21 on the Vic. LDA &FD
loads the accumulator with the contents of
00FD. If you look back, you will see that 00FD
contains the first character square.

STA (&FB),Y loads the contents of the
accumulator into the memory locations given
by 00FB and 00FC-0400 on the 64, 1 E00 on
the Vic—and the offset in the Y register-27
hex on the 64, 15 hex on the Vic. So this
instruction puts the contents of the first
character square into memory location 0427 on
the 64 or 1E15 on the Vic, which is the last
character square in the first row, thereby
swapping the first character square round into
the last.

LDA &FB loads the accumulator with the
contents of memory location 00FB, then
ADC # &27 adds 39 to them on the 64 or
ADC # &15 adds 21 to them on the Vic. The
result is put back into memory location 00FB
by STA &FB. This has the effect of setting the
program up to handle the next row of the
screen.

BCC means Branch on Carry Clear and ADC
means ADd with Carry. So if the ADC instruc-
tion does not overflow the eight-bit
accumulator—and thus the carry flag is not
set—the BCC makes the microprocessor jump
onto the INC &FE instruction.

But if the ADC operation does overflow the
accumulator and sets the carry flag, the micro-
processor moves on to INC &FC. This simply
increments the contents of memory location
00FC which contains the high byte of the
screen location pointer. This ensures that the

pointer is incremented properly and nothing is
lost in the works.

INC &FE increments the counter in 00FE.
And LDX &FE loads the contents of 00FE into
the X register so that CPX # &19 can compare it
with 25—the number of rows on the Commo-
dore 64's screen or CPX # &17 can compare it
with 23, the number of rows on the Vic 20's
screen.

If the counter in 00FE is less than 25 on the
64 or 23 on the Vic, the CPX does not set the
zero flag, so the BNE instruction operates and
sends the microprocessor back to the beginn-
ing of:the routine to move the next row along
one. But if the 00FE counter has clocked up 25
on the 64 or 23 on the Vic, the BNE condition is
not fulfilled and the microprocessor goes on to
the next instruction.

RTS tells the microprocessor to return to
BASIC. All machine code subroutines must
end with RTS, otherwise the microprocessor
will career on up memory, trying to perform
any piece of garbage it might find there and
crash. If you're lucky, you may be able to save
your program by I RU N/STOP I R ESTORE I.

Note that the program only scrolls charac-
ters, not the colours. So you might have to fill
in the screen with a colour different from the
background colour before using the scroll.

The following assembly language program
scrolls the screen to the right. Try hand
assembling it yourself.

I. 	 ECK'
LDA # &00 	LDA # &00
STA &FB 	 STA &FB
LDA # &04 	LDA # &1 E
STA &FC 	 STA &FC
LDA # &00 	LDA # &00
STA &FE 	 STA &FE

. AGAIN LDY # &27 	. AGAIN LDY # &15
elp-- LDA (&FB),Y 	LDA (&FB),Y

STA &FD 	 STA # &FD
LDY # &26 	LDY # &14

LOOP LDA (&FB),Y 	. LOOP LDA (&FB),Y
....k.).'4- INY 	 INY

STA (&FB),Y 	STA (&FB),Y
DEY 	 DEY
DEY ‘ DEY —4--
CPY # &FF ,ti 	CPY # &FF
BNE LOOP 1-7 ,--^ 	BNE LOOP ' 	LDY # &00 "--- 	LDY # &00
LDA &FD , 	 LDA &FD
STA (&FB),Y 	STA (&FB),Y ' 	LDA &FB 	 LDA &FB

1
'

ADC # &27 	ADC # &15
STA &FB 	 STA &FB t-... 	BCC JUMP BCC JUMP '' 	INC &FC 	 INC &FC

JUMP INC &FE 	. JUMP INC &FE
LDX &FE 	 LDX &FE

CPX # &19 	CPX # &16
BNE AGAIN 	BNE AGAIN
RTS 	 RTS

This program, you will notice, works the same
as the scroll left program—except in the line
shift routine you increment where you de-
cremented before, and decrement where you
incremented.

The branches are the same, so you will be
able to check the jumps by looking back at the
machine code listing above. (Remember that
you have to work out the jump from the end of
the branch instruction, that is including the
byte that carries the jump itself.)

As the Electron and the BBC Micro use
essentially the same chip as the Commodores,
the same scrolling programs should work on
both—with adjustments as the memory ad-
dresses are not the same as the Commodore's.
The MODE 7 screen starts at 7C00 instead of
0400, so the 04 in the third line has to be
changed to 7C. And all the zero page addresses
have to be changed as the BBC Micro uses
different parts of the zero page as its own
workspace.

The zero page addresses FB, FC, FD and FE
in the Commodore's programs must be
changed to 70, 71, 72 and 73 for the BBC. This
is covered in the user guide and in a later
article in INPUT.

Unfortunately these programs only work
properly on the first 25 lines in Mode 7 so
you cannot use them on the Electron.

In fact, this whole machine code routine is
unnecessary on the BBC Micro, since the
screen instruction VDU 23;13,V,0;0;0; (where
V runs from 0 to 40) scrolls the screen to the
left and (where V runs in the other direction
from 40 to 0) scrolls it to the right. This
does not work on the Electron either.

MI El
This assembly language routine scrolls the
screen to the left. Here it has been translated
into machine code for you.

LDX #1024 	 8E 04 00
LOOP LDB ,X+ 	 E6 80

PSHS B 	 34 04
LDB # 31 C 	 C6 1F

JUMP LDA ,X+ 	 A6 80
STA — 2,X 	 A7 1E
DECB 	 A 5A
BNE JUMP 	 F26 F9
PULS B 	 35 04
STB — 1,X 	 E7 1F
CMPX # 1536 	 8C 06 00
BLO LOOP 	 25 EA
RTS 	 39

HOW IT WORKS
The computer's text screen begins at 1024, so
LDX # 1024 loads the address of the top left
character square into the X register. LDB ,X +
loads the B accumulator with the contents of
the memory location whose address is in the X
register and increments the X register by 1.
PSHS B PuSHes the contents of the B
accumulator—that is the contents of the first
character square—on to the stack S.

LDB # 31 loads B with the number 31. This
is going to be used as a counter. Although
there are 32 character squares in a line on the
Dragon and Tandy you only do the simple
operation of shifting each of them one square
to the left 31 times. Taking the contents of the
first square and shifting it to the other end is
handled separately after the rest of the line has
been shifted.

LDA ,X + loads the A accumulator with the
contents of the memory location whose ad-
dress is contained in the X register—this you
will note is one on from when we loaded the B
accumulator, because the X register was in-
cremented afterwards—and increments the X
register again. The STA — 2,X then STores the
contents of the A accumulator in the memory
location two before the one now pointed to by
the X register, in other words one before the
one it was taken from—the X register has been
incremented since then, remember.

DECB DECrements the B register, counting it
down on each successive pass from 31 to 0.
This operation affects the zero flag—so if the
result is zero the zero flag is set. BNE checks to
see if the zero flag is set. If it is not the program
branches. JUMP is the label so the program
loops back to the LDA ,X + instruction and
shifts the contents of the next character square
along until it gets to the end of the line.

At the end of the line—when DECB has
counted the B register down to 0—the zero flag
is set, so the branch does not occur and the
microprocessor goes on to the next instruction
in the program.

PULS B PU Lls the contents of the top
memory location off the stacks and puts it back
into the B register. The contents of the B
register are then stored in the memory location
whose address is one less than the one in the X
register. This is the last character square in the
row and what you got back off the stack, you
remember, is the contents of the first character
square. So the whole row has been shifted
along and the first square in the row has been
shifted round to the end.

CMPX # 1536 CoMPares the address in the X
register with 1536, which is the address of the
first memory location after the end of the text
screen. And BLO branches if contents of the X

register is lower than 1536. LOOP is a label so if
the program has not completed shifting the last
character square the microprocessor jumps
back to the LDB ,X + instruction and starts
again on the next line of the text screen.

If the X register does contain 1536, the last
character square on that line has been shifted,
and the microprocessor goes onto the next
instruction.

RTS returns to BASIC. Every machine code
subroutine must end with this instruction,
otherwise the microprocessor will carry on up
the memory trying to perform any instruction
it might find there and end up crashing.

The following assembly language program
scrolls the screen to the right. Try hand
assembling it yourself. (Remember, the num-
bers and addresses given are in decimal, don't
forget to convert them into hex.)

LDX # 1536
LOOP LDB , — X

PSHS B
LDB #31

JUMP LDA ,— X
STA 1,X
DECB
BNE JUMP
PULS B
STB ,X
CMPX # 1024
BGT LOOP
RTS

This program, you will notice, works the other
way round. It starts at the end of the screen in
location 1536 and works back to the beginning
at 1024. Actually 1536 is the location after the
end of the screen but the postbyte , — X
decrements the X register before the command
is executed, as opposed to ,X + which incre-
ments the X register after the instruction has
been executed. So if LDB , — X is going to load
the B accumulator with the contents of the last
screen location, you have to start with the
address of the one after the last screen location
in the X register.

Otherwise, this program works in exactly
the same way as the previous one, so you will
be able to check that you have worked out the
branches right by looking back to the machine
code listing given above.

.01zototi— DON'T PANIC 	4
If you have followed this article you already
know that assembling by hand is extremely
difficult. But don't panic. In the next few
issues, INPUT is publishing assemblers
which will work on the Spectrum, Commo-
dore 64, Dragon and Tandy computers and
will do all this tedious translation for you. The
Acorn's already have a built-in assembler.

Now that you are proficient at
typing the middle line of keys you
can extend your skills to cover the
whole alphabet. But first you'll have
to alter your existing program ...

Last time you were given the first part of
INPUTS typing course. Once you've mas-
tered the middle line of the keyboard to a
reasonable standard—say 15 words per minute
without making any mistakes—you can pro-
gress to the second stage.

THE QWERTY KEYS
By adding these lines to your existing program
you can add the top line of letters the
`QWERTY' line from which the keyboard
layout often takes its name—to your reper-
toire. LOAD your program as it stands, then
type in these new lines. Some of them
overwrite lines which are no longer needed—
others are completely new.

30 LET S$ = "QAWSEDRFTGYHUJIKOLP"
210 FOR K =6 TO 24
230 LET R$ = S$(K — 5)
320 LET RN=INT (RND. 19) + 1
330 PRINT AT 10,RN + 5;"*": LET

R$ = S$(RN)

350 PRINT AT 10,RN + 5;" 0"
440 LET RN=INT (RND-19) + 1
530 PRINT AT 10,13;"0 0 0 ❑ 1=1

❑ ❑ ❑ ❑ ❑ ": PRINT AT 10,13;T$
540 FOR M =1 TO LEN T$: PRINT AT

9,11+M;" ❑ . ❑❑❑❑❑❑❑
El 0 0"

610 FOR N =1 TO 4: RESTORE : LET
RN=INT (RND*24) +1: FOR K=1 TO RN:
READ X$: NEXT K

1010 PRINT AT 12,6;S$
2000 DATA "TWIST","QUEST",

"TRADE","POISED","GRAPE",
"PRIEST","THRASH","WHALE",
"ADDRESSED","TRAPPED",
"SLOWLY"

'
 "PLAGUE"

2010 DATA "TULIP","PLEASE",
"RUDDER","JESTER","OTHER",
"FLOUR","YOUTH","AFTERWAR DS",
"QUARTER","FRAGILE","YEAST",
"JAIL"

10 DIM W$(21),W0$(28):FOR Z =1T028:
READ WO$(Z):NEXT

40 A$ = "QAWSEDRFTGYHUJIKOLP:":
POKE 54296,15:GOTO 380

80 PRINT"I§Igggggg Mgr:
IF K<3 THEN PRINTTAB(11)
"pa"A$:POKE 198,0

90 X= INT(RND(1)•20)+1:N= N+1:
P=P+1:1F K=1 THEN X=N:
GOTO 120

100 IFK =3THENX= INT(RND(1) . 20)
+1:PRINTTAB(18)"L DRD gg
111111 ED u"mios(As,x,i)
"LEO g0111111 DBE "

■ EXTENDING THE TYPING TUTOR
■ ADDING THE TOP LINE OF KEYS

TO THE PROGRAM
■ HOW TO POSITION YOUR FINGERS

FOR THE EXTRA KEYS

■ ADDING THE BOTTOM LINE
OF KEYS

■ CHANGING THE DATA
■ PRACTISING WITH THE WHOLE

ALPHABET

110 IF K=4 THEN PRINT TAB(16)
"L00000E0000

W$(WW):X= N + 5
120 IF K<3 OR K=4 THEN PRINT

"gigggagggg"TAB(11+(X-1))

130 IF K=5 THEN FOR Z=1 TO 5:
PRINT "B"W$(Z);:NEXT Z:
PRINT:PRINT "a IL" ;

220 IF K < 3 OR K=4 THEN PRINT
"gigggigggg"TAB(1i+(X-1))"o"

260 IF K=1 AND N=20 THEN 290
350 NU = 0:P= 0:S = 0:FORVVW= 1TOMM:

W$(VVVV)=WO$ONT(RND(1)*28) + 1)
360 IF K=5 AND WW< >5 THEN

W$(WW) = W$ (WW) + "0"
470 IF K=5 THEN PRINT TAB(12)

"1DTYPE THESE WORDS":MM = 5
540 DATA TWIST,QUEST,TRADE,

POISED,GRAPE,PRIEST,THRASH,
WHALE,ADDRESSED

550 DATA TRAPPED,SLOWLY,PLAGUE,
TULIP,PLEASE,RUDDER,JESTER,
OTHER,FLOUR

560 DATA YOUTH,AFTER,QUARTER,
FRAGILE,YEAST,JAIL,WEATHER,
TOWARDS,REWARD,THROUGH

530 PRINTTAB(-1 +72,9)" ❑ "
TAB(- 1 + T*2,10) 92$

630 PRINTTAB(1,10)A2$
650 P= RND(20):X= P*2-1
820 P= RND(20):B2$= MID$(A$,P,1)
950 P= RND(24)
1150 B2$=A$(RND(24))
1180 B2$=B2$+" ❑ "+A$(RND(24))
1330 DATA IVVIST,QUEST,TRADE,

POISED,GRAPE,PRIEST,THRASH,
WHALE, DRESSED,TRAPPED,
SLOWLY,PLAGUE,JAIL

AFTER,QUARTER,FRAGILE,YEAST,
JAIL

9020 DATA WEATHER,TOWARDS,
R EWAR D,THROUG H

When you RUN the program, the screen will
display the familiar menu of five options.
Level 1 displays the sequence of letters
QAWSEDRFTGYHUJI KO LP . Depending
upon which computer you have, the layout of
the keyboard may also include a final character
; or :. As a prompt, you will see the asterisk
appearing above them, working from left to
right as before.

Levels 2 and 3 work in exactly the same way
as in the first test, getting you to type these
characters at random but with a greater range
of letters.

THE ZXCV KEYS
When you've become proficient at using the
top line of keys with the middle line it's time to
try the bottom line.

Part three of the course teaches you how to
use the bottom and middle lines of the key-
board, progressing through each of the five
levels of skill—but not yet all three together.

Here are the alterations you'll have to make
this time:

30 LET S$ ="AZSXDCFVGBHNJMKL"
210 FOR K=6 T021
320 LET RN=INT (RND . 16) +1
440 LET RN=INT (RND*16) +1
610 FOR N =1 TO 5: RESTORE : LET

RN=INT (RND*24) +1: FOR K=1 TO RN:
READ X$: NEXT K

540 DATA CLASH,SMASH,
DAM, LAM B, SACK,
SLACK, LAX, SHAM,
HAMS,SLAM

550 DATA MADAM,FLAN,
JAll,KNACK,CLASS,
VAN, LAVA

560 DATA SHALL,BAND,
BLACK,CASH,JACK,
SLANG,CALL,BALL,
HAND,GNASH,CASK

B
40 A$ ="AZSXDCFVGBHNJMK,L.;":

A2$="A ❑ Z ❑ S ❑ X ❑
D ❑ C ❑ F ❑ V ❑ G ❑ B ❑ H ❑
N ❑ J ❑ M ❑ K ❑ , ❑ L ❑ . ❑ ;"

420 PR1NTTAB(2,10)A2$
430 FOR T=1 TO 19
460 PRINTTAB(T*2,9)"*"TAB (r-2,10)B2$
530 PRI NTTAB(1-2,9)" ❑ "TAB (72,10)B2$
630 PR1NTTAB(2,10)A2$
650 P=RND(19):X= P*2
820 P=RND(19):B2$= MID$(A$,P,1)

430 P$ = M1D$(0B$,RND(19),1)
800 CLS:P$ = "": FOR K = 1 TO 5
9000 DATA CLASH,SMASH,

DAM, LAM B,SACK,SLACK, LAX,
S HAM, HAMS,SLAM, MADAM,FLAN,
JAZZ, KNACK

9010 DATA CLASS,VAN, LAVA,
SHALL, BAND, BANG, BLACK,
CASH,JACK,SLANG

9020 DATA CALL, BALL,G NASH,
CASK

RUNning the program this time will allow you
to progress through the five lessons, but with
letters and words drawn from the bottom two
rows of the keyboard.

Again, sit with your fingers correctly posit-
ioned on the home keys. This time you'll be
moving your fingers down to the bottom line
before returning to the correct home key. The
little finger of your left hand will operate the A
and Z, the next finger the S and X, and so on.
The index finger of your left hand will be used

for the F, G, V and B, whilst the index finger
of your right hand will be used for H, J, N and
M. The remaining fingers have to operate the
punctuation keys in the bottom line, which
vary from keyboard to keyboard. On the
Spectrum, these are not available without
using SYMBOL SHIFTS and will be covered later.
Note that the punctuation keys are not in-
cluded in the word tests—you'll get a chance to
practise punctuation with a further program in
a later article.

Improving the Spectrum's
keyboard

You can improve upon the Spectrum's
keyboard and so make it easier to learn to
type, by replacing the Sinclair standard
keyboard with a new one.

Several companies now sell 'real' key-
boards for the Spectrum and although
there are a number of differences they are
all very easy to fit to your machine.

The easiest to fit comes as a totally
separate unit that simply plugs into the
back of the computer. The old keyboard is
then disabled and you do all your typing on
the new keyboard.

Other types replace the original key-
board and with these you have to open up
the computer, disconnect the two ribbon
cables from the old keyboard and connect
them to the new one.

The problem with this method is that
your guarantee becomes invalid if you open
up the Spectrum's case. However you can
overcome this by taking out an insurance
policy against your Spectrum going wrong.

THE WHOLE ALPHABET
Once your proficiency at using the bottom row
of keys matches your proficiency at the top
row, you can continue with the next stage of
the course. This time you can practise using
the whole alphabet.

Here are the alterations you need to make to
your existing program:

30 LET S$ = "QAZWSXEDCRFVTGBYHN
UJMIKOLP"

210 FOR K=2 T027
230 LET R$ = S$(K —1)
320 LET RN = INT (RND*26) + 1
330 PRINT AT 10,RN +1;"*": LET

R$= S$(RN)
350 PRINT AT 10,RN+1;" ❑ "
440 LET RN = INT (RND*26) +1
530 PRINT AT 10,13," ❑ 111 111 111 111

Li ❑ all ❑ ":PRINT AT 10,13;T$
540 FOR M =1 TO LEN T$: PRINT AT 9,11

+ 	 El 	El"
610 FOR N =1 TO 5: RESTORE : LET

RN= INT (RND*24) + 1: FOR K=1 TO RN:
READ X$: NEXT K

1010 PRINT AT 12,2;S$
2000 DATA "QUIZ","THROUGH",

"WIND","MURDER","JUNTA",
"FROWN","BUNK","WAXY",
"WHACK","KILN","SWARM",
"LONGER"

2010 DATA "TICKLE","LIMBS",
"VIEWED","SETTING","PACK",
"CRAVE","DRIBBLE","MEANT",
"MAWLED","WRIGGLE","ANSWER",
"WINDOW"
As with all the programs in this typing

course, as soon as you become familiar with the
words in the DATA statements you should
change them for some new ones. Often the
programs for the other computers have differ-
ent words that you can use, but make sure that
you don't use fewer words than the original
program or you'll be given an OUT OF DATA
error. You can have more entries, of . course,
but these won't be READ by the computer
unless you change the program.

4I
40 AS = "QAZWSXEDCRFVTGBYHNUJMIK,

OL.P:/":POKE 54296,15:GOTO 380
80 PRINT "ggggggggigg" ; :

IF K<3 THEN PRINT TAB(5)
"pg"As:POKE 198,0

90 X=INT(RND(1)*30)+1:N=N+1:
P=P+1:IF K=1 THEN X= N:
GOTO 120

100 IFK=3THENX=INT(RND(1)
*30) +1:PRINTTAB(18)
"ILREA0111111 I 11"
miDs(As,x,i)"p !Ill
1111111DEE"

110 IF K = 4 THEN PRINT TAB(16)
"LEE1111111111111111111110

W$(VVW):X = N + 11
120 IF K < 3 OR K=4 THEN PRINT

"eigggaggg"TAB(5+(X-1))

220 IF K<3 OR K=4 THEN PRINT"gi
gggggggg"TAB(5+ (X-1))"0"

260 IF K=1 AND N<30 THEN 70
280 IF (K<4 AND K>1) AND N<20 THEN

70
540 DATA TYPING,THROUGH,THINK,

VIEWED,SETTING,PACK,CRAVE,
MEANT,LIMBS,TICKLE

550 DATA LONGER,SWARM,WANT,
MATE,MURDER,WIND,QUIZ

560 DATA WINDOW,CAR,NOTHING,
CARAVAN,NAME,SLAVE,BORDER,
ZERO, BREAD,MODE,SAVE

20 DIM A$(29)
30 FOR T=1 TO 29:READ A$(T): NEXT

40 A$ = "QAZWSXEDCRFVTGBYHNUJ
M1K,OL.P;":A2$ =A$

420 PRI NTTAB(4,10)A2$
430 FOR T=1 TO 29
460 PRI NTTAB(3 + T,9)"*"TAB (3 + T,10)B2$
530 PRINTTAB(3+ T,9)" El "TAB

(3 + T,10)B2$
630 PRI NTTAB (3,10)A2$
650 P= RND(29):X= P + 2
820 P= RND(29):B2$= MID$(A$,P,1)
950 P=RND(29)
1150 B2$=A$(RND(29))
1180 B2$= B2$ + "El" +4(RND(29))
1330 DATA QUIZ,THROUGH,WIND,

MURDER,JUNTA,FROWN,BUNK,
WAXY,WHACK,KILN,SWARM,
LONGER,TICKLE,LIMBS

1340 DATA VIEWED,SETTING,PACK,
CRAVE,DRIBBLE,MEANT,SKULL,
CASTLE,WANDER,DUCK,
DECIMAL,VAMPIRE,WOMEN,
ACORNS,SQUID

tZ !HI
10 OB$ = "QAZWSXEDCRFVTGBYHNUJ

MI K,OL. P;"
210 AP =1248
220 FOR K=1 TO 29
320 AP=1248+RND(29)
430 P$ = MID$(OB$,RND(29),1)
800 CLS:P$=`"':FOR K=1 TO 4
1020 PRINT@257,OB$
9000 DATA QUICK,GROWN,LAZY,

J UM PER,TRACE,VE1L,B LAZE,
VIEWS, FAVOUR, BASKET

9010 DATA BRASH,RAMBLE,BOUGHT,
PLANK,WANDER,MENDS,MUDDLE,
BLANKET,GROUND

9020 DATA FREEZE,BRAKE,BARRED,
LINKS,GRAINS,CHASED,BREAD,
PHONE,LIMPED

Work your way through the five lessons as
before. Remember to return your fingers to
their correct position above the home keys
each time after pressing a key in the top or
bottom row.

GETTING BETTER
As the course progresses, you will get a chance
to improve your speed and accuracy on all the
letter characters on the keyboard. You'll also
see how to include the number keys and
punctuation—crucial for accurate copying of
program listings.

By adding these and the control keys, such
as SHIFT, you'll rapidly be in a position where
you are completely at home typing complex
sentences and lengthy program lines—and
there are plenty of exercises to come which will
allow you to practise your growing skills.

■ USING ABBREVIATIONS
■ HOW TO SAVE MONEY
■ MISSING OUT SPACES
■ USING LONG LINES
■ SPEEDING UP YOUR PROGRAMS

Shorter programs mean less typing,
they also take up less memory space
and make your programs run faster
too. Here are some tricks you can
use and some pitfalls to avoid

One of the most important rules to remember
when writing a program is to make is clear and
readable. This usually means keeping the
program lines short, adding lots of space and
using long variable names where possible.

However, long readable programs do in-
volve a lot of extra typing, as well as using up
extra memory and running slightly slower than
they might.

Perhaps the first reason for wanting to
shorten a program is to save typing so many
characters. If you are copying a listing from a
magazine then there really is no reason to type
in all the REM statements. After all, you can
always refer back to the magazine if you forget
what is going on.

Another way to reduce the wear on your
typing fingers (or finger) is to miss out optional
keywords. This is not possible on the Spec-
trum because of the gtructure of its BASIC—
and since the keywords are entered with a
single keystroke, there wouldn't be much
saving anyway. But on the other computers
you can miss out every LET and THEN, and if
you have a line that reads IF. ..THEN GOTO.. .
you can choose whether to miss out the THEN
or the GOTO (but not both).

The Commodore and Acorn computers
allow you to enter keywords in a shortened
form, such as P. instead of PRINT on the Acorn,
? instead of PRINT on the Commodore and so
on for most of the other keywords. The
Dragon, though, has only two shortened
forms, ? for PRINT and ' for REM.

In all but the last case, when you LIST or
print out the program, the words will appear in
their full form. So although it saves typing it
won't save money or make the program run
any faster. The next few tricks do both though.

SAVING MEMORY
Perhaps the most important reason to shorten
a program is to save precious memory space.
With a large program it may make the dif-

ference between one that RUNS and one that
gives you 'out of memory' or 'no room' error.
So here's a few ways to save some extra bytes.

One way is to use single letter names for the
variables. This saves typing, saves memory
and also allows the program to RUN faster. But
it's always best to keep a list of what each
variable does since the letters you use are
unlikely to give you much of a clue when you
come back to the program later on.

Another way of shortening a program is to
miss out spaces. This doesn't apply to the
Spectrum of course, since spaces appear auto-
matically as you type in the program—
although they don't take up any memory. On
the other computers, missing out the spaces is
really quite a desperate measure as it makes the
program very difficult to read. But if you are
very short on memory then it may be nece-
ssary. There is just one pitfall to be aware of—
you must leave a space between a variable and
the start of a keyword. So a line like:

IF A= B AND B=C THEN PRINT "OK"

can be shortened to

IFA= B ANDB = C THENPRINT"OK"

But if, instead, you wrote

IF A= BAND B=C THENPRINT"OK"

the computer would start looking for a variable
called BAND, and as this doesn't exist you'd
get an error message. However, you can join
any number of keywords together without
spaces.

The last memory saving trick is to use long
program lines by combining as many state-
ments as possible onto a single line. This saves
the memory that would have been used for all
the extra line numbers. But again, it makes the
program almost impossible to read so it's not
worth doing unless it's absolutely necessary.
In any case it is not possible to do this on the
ZX81.

Most of these methods tend to speed up the
running of a program. But one way to add a lot
of extra speed is to miss out the variable that
comes after NEXT in a FOR.. .NEXT loop. Also if
you have several loops nested together than
you can put all the variables on one line as long
as they are separated by commas—for
example, NEXT A,B,C. And if you have an
Acorn computer, you can write the last
example as NEXT,,.

Program faults are not just a
nuisance, but must be located and
cured before a program is of any
real use. Tracing them is rather more
than half the battle ...

Program errors—tugs'—occur in programs
for a variety of reasons. No program of any
length which is being developed or simply
copied from a listing is likely to be completely
free of them.

Program bugs can take two forms. The
really serious types can prevent a program
from RUNning at all. Other types may remain
for the most part hidden, until a certain routine
or sequence of keystrokes is brought into play.
For example, in an adventure game, every-
thing might work perfectly, unless you walk
down a particular path while carrying a knife—
in which case you fall down a hole that
shouldn't be there. Or in an accounts program
you might suddenly come across a huge error
that only affects entries made in the second
week of December.

The first type of bug really must be

eliminated before a program is going to be of
any use to anyone.

And the second? Well, it is considered good
programming sense to unearth these by testing
a program thoroughly—and this includes
trying the unexpected such as entering an
`impossible' sequence of keystrokes or input
values. And this is where special error-
trapping routines can be brought into use—a
subject covered in the next part of this article.

ERROR MESSAGES
All home computers generate error messages
of one kind or another, and you will quickly
become used to these as you learn to use your
computer.

These range from simple number and letter
codes to full blown descriptions which leave
you in little doubt about the exact nature of the

fault—even if, on occasions, they do not
exactly point to the fault itself'.

Full details of error messages can be found
in your computer's manual, so use this to
examine the meaning of those that you do not
understand. Only then proceed with correct-
ing the fault.

BUG TRACING
One important rule is to trace each error as it
crops up. Do not leave a known bug within a
program even if the program seems to RUN
satisfactorily thereafterwards or if the bug only
rarely affects it.

Otherwise there's just a chance that this
`nastie' will crop up at a critical time later on.
The result could be a program crash which
may mean a lot of extra keying-in time, or-
worse—the loss of valuable data if the program

■ THE IMPORTANCE OF TRACING
EACH ERROR AS IT CROPS UP

■ ERROR MESSAGES AND WHAT
THEY SIGNIFY

■ DIRECT AND INDIRECT LEADS

■ AVOIDING COMMON ERRORS
■ TAKING CARE OVER DATA

STATEMENTS AND SPACES
■ PROGRAM TO TEST YOUR BUG

FINDING ABILITY

has been put to actual use. At the very least you
will lose a valuable opportunity to correct the
problem.

Tracing errors—`debugging'—can be a
fearfully complicated task unless you try and
isolate each problem in an orderly manner. In
typing up a program list—or developing your
own program—rather more than a single error
is likely. But each error must be treated
individually—first located then corrected—
before moving onto the next.

Start by thinking simple. The simplest of
errors is often amongst the most difficult to
isolate and—contrary to what you might be-
lieve at the time—often the sole cause of
difficulties in the proper RUNning of a
program.

What you have to establish is a set routine
for debugging your programs. There are some

simple techniques and effective shortcuts.
To start with, quite a few error messages

actually point directly to the line in which the
error occurs. This includes the commonest of
the lot—SYNTAX ERROR— and several
others (see table). But many others are less
obliging, indicating errors on lines that are in
fact perfectly correct. For example, you might
get a message like E Out of DATA, 10:2 (this
example is from the Spectrum, but the report
on other machines is similar). This suggests
that the error is in the second statement in
Line 10. In fact, the second statement in Line
10 would tell the computer to READ some
DATA, which might appear in Line 200 or even
1000 or later. And it would be the DATA lines
which contained the error, not Line 10. This
type of error is, understandably, much more
difficult to trace for there's no clearcut indic-

ation of where the real problem lies.
With line-indicating error messages you

know the error must be something to do with
the way you have made an entry in a particular
line within the program.

Start by LISTing the program from a point
just before the line number suggested in the
error message. It sometimes helps to LIST the
line itself, separately, a little way from these
lines if your computer has the facility to do
this.

Check first of all that you have not made
some sort of literal error—misspelt something
or used a letter in place of a number (or vice
versa). Be especially careful about spaces and
punctuation. And look for missing
characters—it's very easy to leave off a bracket
in a sequence which makes use of several, for
example. Look at keywords letter by letter
rather than simply glance at them: it's all too
easy to transpose characters within these.

This type of error (see below) is by far the
most common cause of problems and is some-
thing that plagues beginner and expert alike.

PIECE BY PIECE
When you know which line contains an error,
one method of isolating the problem statement
in a line containing two is to place a STOP
statement in a new line immediately after the
line indicated by the error message. Then
insert a REM at the very beginning of the last
statement in the line and reRUN the program—
obviously only if it didn't crash at this point
before. If the syntax error no longer appears
then you know the problem must lie some-
where in that last statement. You can use a
similar method to track down an offending line
if you know which of several it might be. Insert
an extra line between each in turn, containing a
STOP statement as detailed later.

But this method cannot safely be extended
to multiple-statement lines as everything after
the REM and before the next program line is
ignored.

With lines containing multiple statements,
break the line into its component parts and
check each of these in isolation. Each state-
ment can be split into a further line. This is a
simple but useful ploy if things really do look
foggy and confused.

ERROR LOCATION

The following is a list of error messages and
reports for each machine. Where an entry is
preceded by an asterisk (*), the error most
1 . 	occur in the line whose numb -

indicated in the error message • 	se
the error is clearly the imme•esult of a
direct entry or activit 	as SAVEing).
There are alwa 	- ptions, particularly
where a var . 	hich is the cause of an
error i 	mme has been assigned a value
in • 	'iously executed line. When keying

ograms be especially careful to include
space where indicated (in INPUT by using
the symbol ❑)—but if in doubt, leave
them out! On the Commodore remember to
type out PRINT # in full to avoid a syntax
erro

NEXT without FOR, V. 	of found, Sub-
script wrong, * 0 	-mory, * Out of screen,
Number to• 	- TURN without GOSUB, *
End • - 	* STOP statement, * Invalid
. 	t, Integer out of range, * Nonsense in

- IC, • BREAK—CONT repeats, Out •
DATA, * Invalid file name, * No room f• •
STOP in INPUT, FOR without N 	nvalid
I/O device, • Invalid cob 	:BEAK into
program, * RAMtop no 	* Statement lost
(cannot occur in pro !q; , * Invalid stream, FN
without DEF, _meter error, * Tape loading
error.

['3 L*3 .. 0
:AD DATA, BAD SUBS 	, • BREAK, *
CAN'T CONTINUE,

4 	
E NOT PRESENT,

ReR 	program to see w 	. the new
line

	

	group causes the • . message and
from there.

ery long indivi• 	statements present a
different sort of 	• em, and perhaps the best
way of tackl' • 	ese is to determine the actual
values of • 	part of it.

A:. 	presume you've made a silly error
be 	reading too much into the situation. If

ible, rewrite the offending program line to
oduce a number of stand-alone lines which

can be treated individually. This is in itself one
very good reason for leaving plenty of space
between your line numbers.

Where you can't do this, mentally 'explode'
the statement and ask yourself exactly what
each entry is doing at that point in the

program. Try to work out what values have
been obtained for any variables in use at that
point in the program.

With the syntax error the value's of any
variables in action at that point are irrelevant—
they won't be the cause of the problem—and
changes you wish to make to the line can be
done even though this clears the variables.

If you are dealing with more obscure
problems (see below) the actual variable
value(s) can provide clues. You can use your
computer to PRINT these out in direct (im-
mediate) mode before any changes are made to
the program.

While you're at it, check that the name of
the variable is correct. For example, if you
habitually use the variable D for a time delay

loop, you may subconsciously introduce this
when you come across a similar loop in a listing
you are copying but which uses a different
variable—a T, say.

OBSCURE LEADS
Many error messages do not give clear indic-
ation of the offending line number. Instead
they merely indicate where an error has had
some effect and so it can be difficult to pinpoint

likke_ cause.
- But there are exceptions. As in the example

above, for instance, DATA error messages are
displayed in a line containing a statement
which include READ when in fact the error
itself is almost certainly in the DATA statement
line it is trying to access.

Others are less obliging (see table). Most of
these do, however, refer to errors which occur
before the quoted line number in the execution
of the program. This is an important distinc-
tion, because the error could in fact be in a
subroutine well before or after the program
line indicated in the error statement. In this
way a variable may pick up an incorrect value
long before it is spotted.

The best way to treat less obvious errors of
this type is to examine the action of the
program at the time. Start by PR INTing out the
value of every variable—if you have a printer
attached you could make a hard copy of these.
But it's almost as easy to use the direct PRINT
command or any allowable abbreviation fol-
lowed by the variable name—such as PRINT V.
Note down the values.

Now examine how the variables work in
relation to each other. Again, you may find it
helpful to split a long program line into smaller
lines, each containing a single statement.

Trace back each variable from this point in
the program to compare its real value (the
figure you have noted) with what it should
have been if the program had RUN correctly.

This can, unfortunately, be a long and
difficult job in a lengthy program. Some of the
donkey work can be removed by RUNning the
program through various distinct stages—such
as just before and just after a particular set of
inputs—and note how the values of the vari-
ables change.

Unless you are timely with the use of the
RUN/STOP or I BREAKI keys of your computer,
it's advisable to introduce temporary lines
containing the STOP statement within your
program at these points. But note that this
adjustment will clear memory and so the
program has to be reR UN. This may not always
be possible.

When the program STOPS, PRINT the vari-
able values and then key in the instruction to
continue to the next STOP.

DIVISION BY ZERO, * EXTRA IGNORED, •
FILE NOT 	, FILE NOT OPEN, FILE
OF 	ORMULA TOO COMPLEX, •

:GAL DIRECT, • ILLEGAL DEVICE
NUMBER, ILLEGAL QUANTITY, * LOAD, *
MISSING FILE NAME, NEXT WITHOUT FOR,
NOT INPUT FILE, NOT OU 	ILE, OUT OF
DATA, OUT 	 , OVERFLOW,
REDI ' 	, * REDO FROM START,
R 	WITHOUT GOSUB, STRING TOO
LONG, * ?SYNTAX, TOO MANY FILES, *
TYPE MISMATCH, * UNDEF'D FUNCTION,

10

 : :om soopri)r . a

d

STATEMENT, VERIFY. 9

	

Ac 	,

e

 Arguments, * rra , * bad

	

, 	ad DIM, * Bad hex, * Bad MODE, *
Bad program, * Block?, * Byte, Can't match
FOR, Channel, • Data?, • DIM space, Division
by zero, $ range, * Eof, * Escape, Exp range,
Failed at 0, • File?, * FOR variable, * Header?,
Index, * LINE space, Log range, * Missing „ *
Missi ' * Missing), * Mistake, -ive root, No

, No FN, No FOR, No PROC, No
EPEAT, No room, No such FN/PROC, * No

such line, No such variable, * No TO, Not
LOCAL, ON range, • ON syntax, Out of DATA,
Out of range, • Silly, * Syntax, Strin• 	g,
Subscript, * Syntax error 	oo many
FORS, Too many • . • , oo many REPEATs,
* Type o' 	.

/0, AO, B 	. 	 ', DS, FC, FD,
FM * 	, 1 0 *" FiN0, OD, OM, OS,
"G, * SN, ST * TM, * UL.

COMMON ERRORS
The most common cause of program errors are
mistakes made in entering code from printed
listings.

Regardless of the cause, the particular
problem here is confusing characters which
look similar: typically lower case I with capital I
or 1, and 0 with 0. (In the latter respect, on the
BBC, avoid programming in the Teletext
mode where the difference seems marginal
when displayed.)

Also easy to confuse—especially with poor
quality listings—are the colon and semicolon,
and the full point and comma. The semicolon
is typically used in formatting the display, and
accidental use of a colon—which means end of
a statement—in a line such as this would
simply result in a SYNTAX ERROR message:

95 INPUT "ENTER YOUR NAME": N$

But confusion over the full point and comma
can be much more difficult to spot. Take these
two lines, for instance:

1000 DATA 12.4,6,7,8,13,1.7
1000 DATA 12.4,6,7,8.13,1.7

Both could be correct—and certainly would
appear so even on fairly close scrutiny. There

are six items of DATA in the first, but only five
in the second.

This may provide some sort of clue if all the
other DATA statements are restricted to a set
number of items each. This, incidentally, is a
simple method of providing at least one check.

If an error message displayed OUT OF DATA
then there are not enough DATA items and so
the second line would be incorrect. The
presence of too many DATA items does not
cause an error message, but simply assigns the
wrong values to the READ variable. Or it may
assign the wrong value to some of the variables
if another DATA line is short ...

An error message may also result either at
the READ line or a calculation line if the wrong
type of value is assigned to the READ variable.
And the use of a 0 rather than 0—or vice
versa—can have just this effect.

SPACES
Spaces have to be left in some places in a
program but most definitely omitted in
others—the problem is often recognising that
something as 'transparent' as this is the cause
of a problem.

Spaces which are used for cosmetic reasons,
for example to separate one PRINTed statement
from another or to make listings a little clearer,

do not cause errors if omitted. But suspect that
this is what has happened if your screen
displays look squashed up or parts are
overwritten by others.

Both cosmetic and necessary spaces are
indicated by the symbol ❑ in INPUT listings
to avoid confusing the number of spaces you
need to type in. Even a computer print out can
be confusing ... is it 11 or 12 spaces?

An error message results if you accidentally
include a space between certain keywords and
the bracketed argument which follows. TAB(n)
is correct but TAB ❑ (n) is not. The require-
ments in this respect differ from one computer
to another but it's worthwhile checking these
points if all else fails.

OTHER FAULTS
Each computer has its own peculiar types of
bug. Often these relate to imperfections—
rather than true faults—in the operating sy-
stem or the hardware itself. Quite often the
failing is in BASIC itself and a number of
keywords may not behave properly under
certain circumstances. Some of the more com-
mon ones are detailed here, and they will be
pointed out from time to time in INPUT
where they might cause unexpected problems
if care is not taken.

10 LET G =14 : PRINT CHR$ 147
20 DIM A$(G),A (G)
30 FOR Z=1TOG
40 READ A$(G)
50 A(Z)=Z
70 FOR X= GTO1 STEP —I
80 Q=INT(RND (1)*X) +1
90 T= A(X): A(X) = A(Q); A(Q) = t
100 NEXT X
110 FOR T=1TOG:PRINT "ROOM";T

"HAS A" A$(A)(T)):NEXT T
120 DATE ROPE,SWORD,SPANNER,

KNIFE,GUN,KEY,TORCH,CAR,
WHIP,WAND,BOMB,BOOK,MODEL
SHIP,ROBOT

130 GOTO 10

10 LET G=14
20 DIM A$(G),A (G)
30 FOR Z=1TOG
40 READ A$(G)
50 A(Z)=Z
70 FOR X= GTO1 STEP —1
80 Q= RND (X)
90 T=A(X): A(X) = A(Q); A(Q)=t
100 NEXT X
110 FOR T=1TOG:PRINT "ROOM";T

"HAS A" A$(A)(T)):NEXT T
120 DATE ROPE,SWORD,SPANNER,

KNIFE,GUN,KEY,TORCH,CAR,
WHIP,WAND,BOMB,BOOK,MODEL
SHIP,ROBOT

130 GOTO 10

BUG SWATTING
Here's a test of your bug-finding ability and a
chance to put what you've learned into pract-
ice. The programs below are full of bugs—the
sort you might introduce when you copy in a
listing from a magazine or when you try to
adapt a program without fully understanding
what it does. They range from simple typing
errors and syntax errors to errors in the
structure of the program itself.

The correct version of the program ap-
peared on page 155 of INPUT, apart from an
extra line that's been added here to make the
program re-run. But don't look yet until
you've had a proper go at finding the bugs
yourself.

The program is a very short example of how
you might assign objects to rooms in an
adventure game. The list of objects is READ
from a DATA list into one array while the
numbers of the rooms is stored in another
array. The main part of the program—Lines
70 to 100—assigns one object randomly to
each room and makes sure that all the objects
are used and there is only one per room. Line
110 simply PRINTS out the result. At least that
is what the program should do if it was written
correctly!

You'll probably be able to spot a lot of the
errors straight away just by reading through
the program. Try to put right as many bugs as
you can in this way and then, when it's as
`clean' as you can make it, type it in to your
computer and see if it will RUN. No doubt
there'll still be a few more errors lurking there
that you hadn't spotted at first.

If you really get stuck then look back to
page 155 although you'll have to work out the
correct version of the last line yourself. But be
careful not to introduce any new bugs yourself
when you're correcting the others!

10 LET g =14
20 DIM a$ (g,7): DIM a(g)
30 FOR z =1 TO g
40 READ a$(g)
50 LET a (z)=z
70 FOR x=g TO 1 STEP —I
80 LET q= INT (RND*x) +1
90 LET t=a(x): LET a(x) = a(q):

LET a(q) =T
100 NEXT x
110 FOR t=1 TO g: PRINT "Room ;

t; has a";a$(a(t)): NEXT t
120 DATA rope,"sword","spanner",

"knife","gun","key—torch",
"car" "whip","wand","bomb",
"book","model ship","robot"

130 GOTO 10

■ WHY MERGE PROGRAMS?
■ ADDING EXTRA SUBROUTINES
■ STRINGING SEVERAL PROGRAMS

TOGETHER
■ HOW TO MERGE

Why spend precious computing time
rekeying programs that you have
already typed and tested, when you
can enter a few commands and let
your micro do the work?

Keying in even a short program can be
tedious—especially if you are less than an
expert typist. Not only is it laborious, but there
is always a risk of introducing errors—either in
copying wrongly or by mis-keying. So any
method by which you can save yourself un-
necessary typing is well worth using.

There is, unfortunately, no magic answer—
anything that you don't LOAD from a pre-
recorded tape has to be typed into the com-
puter at some time or another. But your can
often economize on the amount of new
material you have to type by editing and re-
using an earlier program—or by bringing
together two or more programs to form one.

There are basically two different ways of
combining programs. Appending is where the
line numbers of one program are all bigger
than those in the other, and they can simply be
joined end to end. Merging is a more com-
plicated process in which two programs can be
knitted together in spite of having similar line
numbers. For the purposes of this article, both
methods will be treated together.

WHEN TO MERGE
Merging is essentially an aid to program
development. Imagine that you have written a
program that does not work as you expected,
or that you wish to change an existing program
to achieve a different task. Your best course
would be to SAVE the program on tape or disk,
then you can continue to work on it further
without fear of ruining the original. After
further development, the program might be
twice as long as the version you originally
SAVEd, or it might have gained several differ-

ent sections. In any event, both versions may
have elements that you wish to keep, but with
so many differences that they would be tedious
to key separately. And you have the further
problem that—short of working it all out the
long way on paper—you need to have both
versions in the memory at once so you can
combine them. This is a case for merging.

A similar need to merge will arise when you
wish to incorporate existing subroutines, pro-
cedures or functions into a new program.
These could be long sections of code that play
a tune, animate a piece of graphics or even
draw a graph of data that has been calculated
by your program.

Most programmers have a whole store of
such routines that they have built up over the
years, and it is always a good idea to do the
same yourself. Then you can merely drop
them into any program as required. Once these
sections have been tested and SAVEd, you
would not wish to retype them every time, but

you can incorporate them by merging.
Another important use for merging is when

you wish to string short programs one after the
other, so that they run consecutively. There
are all sorts of uses for this, but perhaps the
facility is most useful if you use your micro to
display information, such as messages, or
interesting graphics merely for pleasure. For
example, you could have the first program
print a greeting, then the second could build
up a colourful picture, and so on. The last
program could end with a line which sends the
micro back to the first line of the first program,
giving a continuous display.

HOW TO MERGE
Each micro has its own method of merging
programs. Some have a MERGE command,
which ensures that any program already in
memory is retained while another is loaded
from tape or disk. Others require you to enter a
few lines of code, or to allocate space in the
memory for the second program. Whatever the
method used, you must arrange the line
numbers so that the merge is as required.

The ZX81 is a special case. It does not have
a merge command, and you cannot easily load
more than one program in memory. See the Q
& A box for more information.

Merging is made simple on the Spectrum by
the MERGE command. But you must be careful
with the line numbering of the two programs.
For example, to merge a 20-line subroutine
with a larger program, you could leave a gap in
the numbering. The program would be num-
bered from, say, 10 to 50 then 300 to 1000,
and the subroutine from 60 to 250.

Alternatively, you could give the subroutine
line numbers that are all larger than those of
the program, so that it appears at the end of the
program. With a little care, however, you can
arrange for some lines of one program to
overwrite those of another, and add new lines.

Enter and RUN this program to see squares
printed at random positions in two rectangles.
In a moment you will see how to merge it with
another program:

10 BORDER 0: INK 9
50 PAPER 0
60 CLS
70 FOR n = 1 TO 400
80 LET x= INT (RND•32)
90 LET y= INT (RND*22)
100 PAPER 7: IF x > 8 AND x<24 AND y > 6

AND y<16 THEN PAPER 4
110 PRINT AT y,x;" ❑ "
120 NEXT n

SAVE this program (as SQl, say). Do not

disconnect the tape or disk—you will be
LOADing the program back into the computer
almost at once. Of course, you could equally
well use a program that you SAVEd some time
before. All you have to do is to connect the
recorder to the computer first. Enter NEW to
clear the memory before typing in the next
program:

10 BORDER 0: PAPER 0: INK 9: CLS
30 FOR t = 1 TO 5
40 INK INT (RND*6) + 2
60 PRINT AT t,0; "THIS IS A TEST"
130 NEXT t

This program is a simple example which
PRINTs a message (Line 60) five times, but it
could be a much longer program into which
the other is to be merged. Enter MERGE"" E"" to
merge the two programs together. The stored
program will not be merged into the one
above. LIST the new program and notice that
Lines 10 and 60 have been overwritten, while
Lines 50, and 70 to 120 have been added. RUN
the program to see the squares program (SQ1)
executed five times.

There is no facility on the Spectrum to
renumber a program, so if you wish one
program to appear at the end of another, you
must first edit it to adjust the line numbers.

[CE

You could write a program to merge programs
on Commodore micros, but it would not be a

simple exercise. It is far better to make use of
two simple commands that allow you to LOAD
one program on top of another, without
erasing either of them. The program below is
not suitable for the Vic 20 but the method of
merging is the same. So try it out on some of
your own programs instead. To see how this
works, enter and RUN the first program.

10 FOR T=1 T05
20 CC= RND(1)*6 +1
30 POKE 53281,0
40 PRINT "0"
50 FOR N=1 TO 300
60 X= INT(RND(1)*40)
70 Y=INT(RND(1)*25)
80 IF (X<8 OR X>32) OR (Y<5 OR Y>19)

THEN C = CC:GOTO 100
90 C = 7
100 POKE 1024 + Y*40 + X,160:

POKE 55296 + Y*40 + X,C
110 NEXT N,T

This program prints squares at random po-
sitions across a rectangular area on the screen.

SAVE the program (as SQl, say) but do not
disconnect the recording unit, since you will be
LOADing the program back into the computer
in a moment. On the Vic 20 start off by
PEEKing two memory locations; and remember
the numbers (call them A and B) because you'll
need them later on:

PRINT PEEK(43)

PRINT PEEK(44)

Then enter the next line.

POKE 43,PEEK(45) — 2:POKE 44,PEEK(46)

This command finds out where in the memory
the program ends and sets that position as the
loading address of the next program so the
programs follow on one after the other.

Now type NEW and enter the second
program or LOAD it from tape:

200 FOR P =1 TO 30
210 PRINT "0"
220 FOR T =1 TO 34
230 PRINT " gi gg I "TAB (T)

"111*1111117r"
240 FOR Z=1 TO 30:NEXT Z
250 NEXT T,P

This program shows a man and a dog moving
across the screen. Notice that the line numbers
are all larger than those of the SAVEd
program. This is essential, because there is no
standard facility to renumber program lines on
Commodores.

Now enter the next command, which tells
the micro where in memory the second
program begins. On the Commodore 64 use:

POKE 43,1:POKE 44,8

and on the Vic 20 use:

POKE 43,A: POKE 44,B

where A and B are the numbers you found
earlier. The two programs will now run one
after the other, they reside in memory together
and can be treated as one program.

Finally, enter LIST and the merged listing
below will appear.

10 FOR T=1 T05
20 CC= RND(1)*6 +1
30 POKE 53281,0
40 PRINT "0"
50 FOR N =1 TO 300
60 X= INT(RND(1)*40)
70 Y=INT(RND(1)*25)
80 IF (X<8 OR X>32) OR

(Y<5 OR Y>19)
THEN C = CC:GOTO 100

90 C = 7
100 POKE 1024+ Y*40 X,160:

POKE 55296 4- Y*40 + X,C
110 NEXT N,T
200 FOR P=1 TO 30
210 PRINT "0"
220 FOR T=1 TO 34
230 PRINT "I§I gg "TAB (T)

"111160En"
240 FOR Z=1 TO 30:NEXT Z
250 NEXT T,P

Renumbering

If your micro has a RENUMBER command,
you can use it to change the line numbers so
they start at any number and increase in
any regular step. The Spectrum and Com-
modore micros do not have this facility, but
you can buy utility programs that provide
it, together with many other useful fea-
tures, which are explained in the literature
that comes with the package. If you do not
have one of these programs, then you must
renumber line by line manually, making
note of how numbers mentioned at GOTO,
GOSUB and ON will have to be changed.
Work out the changes and jot them down
on paper, to avoid confusion.

There is no MERGE command on Acorn
micros, but programs can be merged simply by
either of two methods.

METHOD ONE
To see how the first method works, key in and
RUN the program below. In a moment, you'll
see how to merge this with another:

10 MODE 1
20 VDU23;8202;0;0;0;
40 C= RND(3) + 127
50 COLOUR128
60 CLS
70 FOR N =1 TO 800
80 X= RND(40) — 1
90 Y = RND(30) —1
100 IF (X<8 OR X>32) OR (Y<7 OR

Y > 21) THEN COLOUR C ELSE COLOUR
131

110 PRINT TAB (X,Y);" ❑ "
120 NEXT

This program prints white squares at random
positions within a rectangular area on the
screen, and coloured squares at random po-
sitions around the white area. Before you can
merge this program with another, you need to
save it as a file of ASCII codes (see page 314).
Have your cassette recorder ready, then key in
the following lines, one at a time, and respond
to the prompts on the screen.

*SPOOL "SQ1"
LIST
*SPOOL

The first line tells the micro to open a file
(called SQ1) on cassette or disk. The second
line lists the program on the screen and sends
the same data to the file. In this way an ASCII
file of SQ1 is created.

Do not disconnect the tape or disk unit. You
will shortly be asked to LOAD the program
back into the computer and merge it with a
new one. But obviously, the method would
equally well apply to anything you have on file
and ready to LOAD. You just have to set up the
tape or disk unit first.

The next step is to prepare your main
program. This can have any line numbers, but
if the same number appears in both programs,
one will overwrite the other. Enter NEW, then
type in the next program.

10 MODE 1
30 FOR T = 1 TO 5
40 COLOUR RND (2) +127
60 PRINT "THIS IS A TEST"
130 NEXT

This prints a message (Line 60) on five lines of
random coloured background. Although this is
only a short, simple program, the principle
holds true for any program, provided that the
combined length is not more than the micro's
memory can hold. And although you entered
this program directly, the method would also
work for any program that you had stored on a
tape or disk and then LOADed in the usual way.

Now you are ready to merge the saved
program into the one in memory. Make sure
your tape or disk unit is connected, then enter
the next line and respond to the prompts:

*EXEC "SQ1"

When you LIST this program, it will be as
below.

10 MODE 1
20 VDU23;8202;0;0;0;
30 FOR T = 1 TO 5
40 C= RND(3)+ 127
50 COLOUR128
60 CLS
70 FOR N =1 TO 800
80 X= RND(40) — 1
90 Y= RND(30) — 1
100 IF (X<8 OR X>32) OR (Y<7 OR

Y > 21) THEN COLOUR C ELSE COLOUR
131

110 PRINT TAB(X,Y);" ❑ "
120 NEXT
130 NEXT

The stored program has been added to the one
in memory, with two differences: the '2' in
Line 40 has been changed to '3', and Line 60
has been changed to CLS. RUN the program,
and it will print the picture of squares five

times, changing colours each time.
Notice that all three programs work satis-

factorily, but that this is not always the case. In
fact, you need to be particularly careful with
the line numbers to ensure the commands are
in the correct sequence. Usually, you will need
to merge unfinished programs, then arrange
the line numbers.

METHOD TWO
The second method of merging requires you to
renumber one program so that the line num-
bers are all larger than those of the program in
memory. To do this, make use of the
RENUMBER command. Enter RENUMBER 150
then LIST the program you have in memory.
Notice how the line numbers have been
changed. Where they once read from 10
through to 130, they now read from 150 to
270. SAVE this program (as SQ2, say), then
enter NEW and the next program:

10 MODE 1
20 VDU19,0,2,0,0,0
30 VDU23;8202;0;0;0;
40 VDU23,224,28,28,8,126,8,24,36,72
50 VDU23,225,0,0,0,131,252,60,36,36
60 FOR P =1 TO 30
70 CLS
80 FOR T = 0 TO 34
90 VDU31, T,5,32,224,32,32,225
100 A= INKEY(2)
110 NEXT
120 NEXT

RUN the program to see a man and a dog
moving across the screen. The program you
stored earlier, SQ2, can now be appended to
this program by telling the computer where in
memory it should be loaded.

To find out where in memory the program
ends, enter the next line:

PRINT TOP — 2

This causes a three or four-digit memory
address to be printed on the screen. Now LOAD
the SAVEd program (SQ2) to this address by
entering the next line.

*LOAD "SQ2")000(

You must begin the command with an asterisk,
and finish with the memory address that was
printed on the screen (XXXX).

When the program has been loaded, enter
END followed by RETURN. This last command
is crucial; it enables the computer to reposition
its pointers, which guide it through the
program. The commonest reason for this
method of merging failing to work, is because
of forgetting to enter END after loading the
second program. Now LIST the program and
notice that the line numbers run from 10

through to 270. When you RUN this program,
it will show first the man and dog, and then the
squares. The whole program can be SAVEd in
the usual way.

tgi !HI
The Dragon and Tandy will allow you to load
one program on top of another, but not to
overwrite lines. Enter and RUN the program
below, which prints coloured squares at ran-
dom positions within rectangular areas of the
screen.

10 PCLEAR4
20 FOR T=1 T05
30 CLSO
40 FORN =1 TO 400
50 X= RND(32) —1
60 Y=RND(16)-1
70 IF X<6 OR X>25 OR Y<4 OR Y>11

Is there an easy way to merge
two programs on the ZX81
computer?
Unfortunately there is no easy way. It
can be done in machine code but the
program is quite complicated.

The ZX81 doesn't have a merge
command and there is no way in BASIC
to LOAD two programs into memory at
the same time. This is because all BASIC
programs are LOADed into the computer
at the same address. So if you try to
LOAD two programs, the second
always overwrites the first.

THEN C=175 ELSE C=255
80 POKE 1024 + Y•32 + X,C
90 NEXT
100 NEXT

Now SAVE the program (as SQl, say), so that it
can be LOADed back into memory at any time.
This program could be a long subroutine or
part of an unfinished program. Ordinarily, you
would connect up the recording unit ready to
LOAD it back into the computer, but now just
leave the recorder connected.

Type NEW and enter the next program:

10 PCLEAR4
20 CLS
30 PRINT@192,STRING$(32,CHR$

(236));
40 PRINT" El WELCOME TO A COLOURFUL

DISPLAY"
?30 PRINTSTRING$(32,CHR$(163))

It prints a message (Line 40). To LOAD the
program you have SAVEd, enter the following
lines.

POKE 25, PEEK(27)
POKE 26, PEEK(28) —2

Next LOAD the program you have SAVEd
(SQl) then enter these two POKEs:

POKE 25, 30
POKE 26, 1

When you LIST the new program, it will appear
with line numbers from 10 to 50 and from 10
to 100. Enter RENUM to renumber the
program, then LIST it again to give something
like this:

10 PCLEAR4
20 CLS
30 PRINT@192,STR1NG$(32,CHR$

(236));
40 PRINT"WELCOME TO A COLOURFUL

DISPLAY";
50 PRINTSTRING$(32,CHR$(163))
60 PCLEAR4
70 FOR T=1 TO 5
80 CLSO
90 FORN =1 TO 400
100 X= RND(32) —1
100 Y=RND(16)-1
120 IF X<6 OR X>25 OR Y<4 OR Y>11

THEN C=175 ELSE C= 255
130 POKE 1024 +Y*32 + X,C
140 NEXT
150 NEXT

The first part of the program is executed
rapidly, followed by the second part. To
separate them, change Line 60 as below.

60 FOR K=1 TO 2000:NEXT

Part of the fun of playing adventure
games is exploring a strange world
without straying from home. We
look at how the adventurer can set
off on his explorations

Now that you have typed in a program
containing all the location descriptions, you'll
want the adventurer to be able to explore your
world—moving from one location to the next.
You need to be able to assess the possible
moves at any point, and to make a choice based
on your judgement and the clues which you
have picked up as the adventure progresses.

This time, to expand your developing ad-
venture program, you'll see routines that will
pick out the correct location description, and
display it, along with the possible exits. The
player will then be asked to type in a response,
and you'll learn how to write a section of
program which moves the player through the
world of the adventure according to the choice
selected.

SETTING OFF
The first thing the computer needs to know is
where the adventurer is at any moment during
play. To do this, the program allows it to keep
track of the whereabouts of the adventurer
with a variable L—for location. The variable's
value is changed to equal that of the current
location at each move.

To start the adventure, then, you have to tell
the computer which location you want the
adventurer to be at initially.

The first section of a program to do this
looks like this. LOAD the section of program
you typed in last time, and add the new lines:

100 CLS: LET DA= 0: LET TA= 0:
LET LA= 0

270 REM — START POSITION**
280 LET L=15
290 GOTO 330

!HI
270 REM ** START POSITION **
280 L=15
290 GOTO 330

10 TA= 0:LA=0
100 MODE 6
270 REM**START POSITION**
280 L=15
290 GOTO 330

15 is the location for the gate to the hidden
city. If you want to start the adventure at a
different location just change the value of L. In
a moment you'll see how to adjust the value of
L during play to suit a new location—but
before the adventurer can move, the player will
need to instruct the computer where to go
next.

RESPONSES
So that the computer will be able to under-
stand and to act correctly upon your responses,
you must give the machine a list of the words it
can recognise.

At this stage of development it only need /
 recognise the four directions so that the

adventure world can be explored. This
can be done with an array R$, which
holds the DATA for each direction
response.

110 REM **SET UP ARRAYS FOR
RESPONSES**

120 DIM R$ (19,40): DIM R(19)
130 FOR K=1 TO 4: READ

R$(K), R(K): NEXT K
150 DATA "NORTH", 1,

"SOUTH", 1, "EAST", 1,
"WEST", 1

131,K B fgi
110 REM**SET UP ARRAYS FOR

RESPONSES . *
120 DIM R$(19),R(19)
130 FOR K=1 TO 4:READ R$(K), R(K):NEXT
150 DATA NORTH, 1, SOUTH, 1, EAST, 1,

WEST, 1

The arrays have been DIMensioned in Line
120 so that they will be able to hold all the
responses needed for the game. At this stage
you are only needing to use the directions, so
the first four elements of array R$ and array R
will be used. The FOR ... NEXT loop in Line
130, READing into both R$ and R, goes from
one to four. The directions, and their numbers
are in Line 150 as DATA.

But obviously, this information is of no use
to the player unless the computer also tells him
or her where they are first.

FINDING A LOCATION
So that the adventurers can keep track of
where they are after each move, they need to be
given a location description. You've already
typed these in, so you'll need a routine which
will pick out the description which matches the
value of L—the location number. This is where
the REM lines you typed in last time will be
useful.

Spectrum owners will have to type in one
extra routine at this stage:

20 DIM G(11,4): POKE 23658,8
30 FOR N = 1 TO 4: FOR M=1 TO 11: READ

G(M,N): NEXT M: NEXT N
40 DATA 0,0,0,5020,0,0,5050,

5080,0,5110,0
50 DATA 5140,0,0,5180,5210,

5240,5270,5300,0,0,0
60 DATA 0,5330,0,5360,0,0,0,

0,0,0,0
70 DATA 1010,1150,1240,1310,1410,

1460,1500,1360,1080,1550,3110
300 REM **FIND LOCATION**
310 CLS
330 IF L<11 THEN GOSUB G(L,1): GOTO

400
340 IF L<21 THEN GOSUB G(L — 10,2):

GOTO 400
350 IF L < 26 THEN GOSUB G(L — 20,3)

E80
300 REM ** FIND LOCATION**
310 CLS
330 IF L<11 THEN ON L

GOSUB 0,0,0,5020,0,0,5050,
5080,0,5110:GOTO 400

340 IF L<21 THEN ON L-10
GOSUB 5140,0,0,5180,5210,
5240,5270,5300,0,0:GOTO 400

350 IF L<26 THEN ON L-20
GOSUB 0,5330,0,5360

On the Commodore and Vic change Line 310:
310 PRINT""

Before you can write this kind of routine you
must be sure of the number of each location
description. Starting with location 1, make a
list of the line numbers of each description. If
there is no description for a particular location,
then write 0. In this adventure, there are no
descriptions for locations 1, 2 and 3, but there
is one for location 4.

Now that you have the list of line numbers,
you can begin writing the routine. On all the
machines except the Spectrum, this is a simple
sequence of operations which checks the value
of L, then uses ON . . . GOSUB. In the case of
the Spectrum, which does not have this com-
mand, the line numbers should be fed into an
array as in the example above.

In the Dragon, Tandy, Acorn and Commo-
dore programs, the list of line numbers is in
Lines 330 to 350, starting at location 1 at the
beginning of Line 330, and ending with
location 24 at the end of Line 350.

The Spectrum, on the other hand, uses the
value of L to pick out an element from the array
filled by Lines 20 and 30. You may notice that
there are a few more numbers in the array than
there are locations in the adventure. All the
extra figures are noughts, so they have no
effect on the operation of the program,
although they are needed because the array
will be used for calling other parts of the
program—you'll see the additions to the array
in a later part of Games Programming.

One last point for Spectrum users: the POKE
in Line 20 merely sets the machine in upper
case so that there are no problems matching
the adventurer's input to the responses in R$.

DISPLAYING DIRECTIONS
In addition to the location descriptions, the
adventurer will want to know which exits there
are. It is not possible to move in all directions
from each location, so the program will need to
check this from the information contained in
the location description—the variables
N,E,S,W. The next section of program will tell
the adventurer which directions are possible:

390 REM **DISPLAY DIRECTIONS**
400 IF DA< >1 THEN PRINT "'YOU CAN

GO";
410 IF N>0 THEN PRINT TAB 11;

"NORTH"
420 IF E> 0 THEN PRINT TAB 11;

"EAST"
430 IF S > 0 THEN PRINT TAB 11;

"SOUTH"
440 IF W>0 THEN PRINT TAB 11;

"WEST"

390 REM ** DISPLAY DIRECTION **
400 IF L< >11 OR (LA=1 AND

OB(6)= —1) THEN PRINT:PRINT "ILYOU
CAN GO ";:G OTO 410

405 GOTO 460
410 IF N > 0 THEN PRINT TAB(11);

"NORTH"

420 IF E>0 THEN PRINT TAB(11);"EAST"
430 IF S> 0 THEN PRINT TAB(11);"SOUTH"
440 IF W> 0 THEN PRINT TAB(11);"WEST"

BEAM
390 REM **DISPLAY DIRECTIONS**
400 IF L< >11 OR (LA=1 AND

OB(6) = —1) THENPRINT:PRINT "YOU
CAN GO"; ELSE 460

410 IF N > 0 THEN PRINT TAB(11);"NORTH"
420 IF E> 0 THEN PRINT TAB(11);"EAST"
430 IF S > 0 THEN PRINT TAB(11);"SOUTH"
440 IF W>0 THEN PRINT TAB(11);"WEST"

The routine simply checks the value of the N,
S, E, and W variables that you filled in, based
on your map of the locations. If the value of the
variables is greater than zero, then the direc-
tion is possible and the exit is displayed.

The routine can be incorporated as it
stands, in any adventure based on a grid of
squares.

INSTRUCTIONS?
Now that the adventurer knows which direc-
tions are possible, some kind of prompt ought
to be given. The player will be asked WHAT
NOW? by this section of program:

450 REM ** INSTRUCTIONS**
460 INPUT INVERSE 1;"WHAT NOW ❑ "; LINE 1$
470 GOSUB 3010
515 GOTO G(I,4)

ICK
450 REM ** INSTRUCTIONS —
460 PRINT: INPUT "AWHAT NOW13"; 1$
470 GOSUB 3010

450 REM**INSTRUCTIONS**
460 INPUT "WHAT NOW",I$
470 GOSUB 3010

•M
450 REM — INSTRUCTIONS**
460 PRINT: INPUT "WHAT NOW";I$
470 GOSUB 3010

In this very straightforward INPUT routine, the
adventurer is asked WHAT NOW? and the
response is called 1$. The computer will then
need to check the player's response and act
upon it. The next line, Line 470, sends the
program on to a subroutine in Line 3010
which handles the player's input.

600 REM **INSTR ROUTINE**
610 LET IN =0: IF LEN Y$> LEN X$ THEN

RETURN
620 FOR K=1 TO (LEN X$—LEN Y$+1)
630 IF Y$=X$(K TO K+ LEN Y$ —1) THEN

LET IN = K: GOTO 650
640 NEXT K

650 RETURN
3000 REM **CHECK INSTRUCTION**
3010 LET N$="": LET X$ =1$: LET Y$=

"El": GOSUB 600: LET I= IN
3020 IF I= 0 THEN LET V$ =1$: GOTO 3050
3030 LET V$ =1$(TO 1-1)
3040 LET N$=1$(1+1 TO)
3050 LET 1=0
3060 FOR K=1 TO 19
3070 IF V$= R$(K, TO LEN V$) THEN LET

I= R(K): LET I$=V$(TO 1)
3080 NEXT K
3090 RETURN

1-CL. —Hr ECK
3000 REM ** CHECK INSTRUCTION —
3010 N$="":FOR Z=1 TO LEN(I$):IF MID$

(1$,Z,1)=" ❑ " THEN 1= Z:GOTO 3020
3015 NEXT:I= 0
3020 IF 1=0 THEN V$ =1$:GOTO 3050
3030 V$= LEFT$(1$,1-1)
3040 N$= MID$(1$,1+1)

3050 1=0
3060 FOR K=1 TO 19
3070 IF V$ = LEFT$(R$(K),LEN(V$))

THEN I= R(K):I$ = LEFT$(V$,1)
3080 NEXT
3090 RETURN

la AC !HI
3000 REM-CHECK INSTRUCTION”
3010 N$='"':1=INSTR(1$,"111")
3020 IF 1=0 THEN V$ =1$:GOTO 3050
3030 V$ = LEFT$(1$,1-1)
3040 N$= MID$(1$,1+1)
3050 1=0
3060 FOR K=1 TO 19
3070 IF 1NSTR(R$(K),V$)=1

THEN I= R(K):1$ = LEFT$(V$,1)
3080 NEXT
3090 RETURN

The routine checks if 1$ consists of two words.
If it does, the first word is called V$, and the
second, N$. V$ stands for verb, if you like—a
word such as GET, KILL or CARRY, and all
of the direction words such as NORTH,
SOUTH, EAST and WEST. N$ stands for
noun—the names of the objects in the
adventure.

The Dragon, Tandy and Acorn machines
use INSTR in Line 3010, to check for a space in
1$—the break between N$ and V$. The Com-
modore, Vic and Spectrum, however, do not
have INSTR. Instead, the Commodore program
uses MID$ to search for the space—see Lines
3010 and 3015. On the Spectrum, though,
there is a very useful little subroutine at Lines

600 to 650 which impersonates the INSTR
function on the other machines.

If a space is found, then Line 3030 labels
the two parts of 1$ as N$ and V$. If no space is
found, Line 3020 relabels the whole of 1$ as
V$.

The remainder of the subroutine—Lines
3060 to 3080—searches through the responses
in R$. R$ is the array that currently holds the
direction responses. Later on, you'll see how it
can be expanded to hold a series of extra verbs.
If Line 3070 finds a match, then I is set to the
corresponding value from R. Later in the
program, the machine will know if a match has
been found by checking if I is greater than zero.
The last part of Line 3070 takes the first letter
of V$ and calls it 1$. 1$ will be used later for
moving the adventurer around.

The subroutines can be used almost without
alteration in any adventure game. There is
only one place adjustments may have to be
made—in the length of the FOR ... NEXT loop
in Line 3060.

MOVING AROUND
All you need to add so that the adventurer can
explore all the locations is a routine which
manipulates the location variable L, according
to 1$. Here it is:

1000 REM ”MOVEMENT ROUTINE**
1010 IF I$="N" AND N > 0 THEN LET

L= L-6: GOTO 310
1020 IF 1$ = "E" AND E>0 THEN LET

L=L+1:GOTO 310
1030 IF 1$ = "S" AND S>0 THEN LET

L+ 6: GOTO 310
1040 IF 1$ = "W" AND W>0 THEN LET

L= L-1: GOTO 310
1050 REM **IF NO LOCATION POSSIBLE IN

DIRECTION**
1060 PRINT "'SORRY YOU CAN'T GO THAT

WAY !!": GOTO 330

IgE 10
1000 REM **MOVEMENT ROUTINE**
1010 IF 1$= "N" AND N > 0 THEN

L= L-6:GOTO 310

1020 IF I$="E" AND E>0 THEN
L=L+1:GOTO 310

1030 IF I$="S" AND S>0 THEN
L= L+6:GOTO 310

1040 IF 1$ = "W" AND W> 0 THEN
L=L-1:GOTO 310

1050 REM — IF NO LOCATION POSSIBLE IN
DIRECTION**

1060 PRINT:PRINT "SORRY—YOU CAN'T GO
THAT WAY !!":GOTO 330

1000 REM**MOVEMENT**
1010 IF 1$="N" AND N>0 THEN

L= L-6:GOTO 310
1020 IF I$="E" AND E>0 THEN

L=L+1:GOTO 310
1030 IF I$="S" AND S>0 THEN

L= L+6:GOTO 310
1040 IF 1$="W" AND W>0 THEN

L = L — 1:GOTO 310
1050 REM****CAN'T GO THERE****
1060 PRINT "`SORRY—YOU CAN'T GO THAT

WAY !!":GOTO 330

You'll remember that the adventure was based
on a grid six locations wide. Moving around
the adventure involves altering the value of L
by a factor based on the grid size. Moving
North and South involves adding and sub-
tracting 6 from L to drop you or raise you by
one whole line on the grid. Similarly, moving
East and West involves adding or subtracting 1
from L.

Lines 1010 to 1040 check 1$ for direction
instructions and adjust L appropriately. Move-
ment will only be possible if there is an exit
which matches 1$'. The exits were defined in
the lines immediately following the location
descriptions.

If there isn't an exit in the direction that the
adventurer wants to go, Line 1060 displays the
message SORRY—YOU CAN'T GO THAT
WAY!!

The only alteration you will have to make if
you want to use the routine in a different
adventure will be if the grid is a different size.

In that case, Lines 1010 and 1030 will have to
be altered according to the width of the grid.

Now SAVE the program ready for the next
part of Games Programming.

Will the program understand
direction instructions such as
NORTH and GO NORTH as well
as single letters such as N?
The Check Instruction routine—from
Line 3000 to Line 3010—is specially
written so that it picks out single letter
instructions and handles them separately
from longer instructions.

The single letter instructions are called
1$ and later on the program will check 1$
for the letters N, S, E and W, allowing
the player to type the shortest form of the
instruction, and making the game quicker
to play

There is nothing to stop you making
additions which will allow the adventurer
to use NORTH or GO NORTH,
though. Next time you will see how the
program handles verbs and nouns.

What you should do is to add
either the complete words for directions
to the directions list, or add GO to
the verb list and write a routine z
which handles the new verbs.

Find out how to use the GET and
PUT commands on the Dragon and
Tandy. Once you've mastered them
it's simple to animate almost any
graphic

Once you can set up both black and white and
colour UDGs you will almost certainly want to
move them around the screen. To do this, you
need to use the GET and PUT commands which
you have already seen used many times in
Games Programming—see page 144, for
example.

GET can be thought of as being similar to
taking a photograph of an area of the Dragon's
high resolution screen. Whatever is being
displayed in that area will be stored in an array
(see Basic Programming, page 152)—it doesn't
matter if the area contains a UDG or a graphic
displayed using some other graphics command
such as LINE, CIRCLE or DRAW. You can GET
any rectangular area, up to and including the
whole screen.

PUT is the reverse of GET, and literally puts
the photograph—the contents of the array—
back on the screen anywhere you wish. Using
PUT is much quicker than re-drawing the
graphic using other methods, and animation
can easily be simulated by repeatedly PUTting
an image in different positions, or by re-
peatedly PUTting different images.

ON YOUR BIKE
Type in and RUN this program which demons-
trates using GET and PUT to animate a UDG of
a bicycle:

10 PMODE 4,1:PCLS
20 DIM BY(5)
30 FOR K=1536 TO 1856 STEP 32
40 READ A,B,C
50 POKE K,A:POKE K+1,B:POKE K +2,C
60 NEXT
70 SCREEN 1,1
80 GET (1,0)— (18,11),BY,G
90 PCLS
100 FOR K=0 TO 238
110 PUT(K,90)— (K+17,100),BY,PSET
120 NEXT
130 GOTO 90
140 DATA 1,193,192,0,129,32,0,255,

64,1,134,0,14,139,128,19,86,64
150 DATA 36,233,32,47,233,32,32,104,

32,17,100,64,14,3,128

The DATA from Lines 140 and 150 is called
up and POKEd on the screen by Lines 30 to 60.
The bicycle is drawn in the top left-hand

corner, or the beginning of the screen. Whene-
ver you want to POKE a graphic on the screen
and then use GET and PUT it's a good idea to
draw the graphic here first because you know
exactly where the graphic is—converting

memory locations into screen locations isn't
particularly easy because of variations between
PMODEs. Exactly how this works is explained a
little later. Line 80 GETs (or 'takes a photo-
graph', if you like, of) the bicycle.

■ SETTING UP A UDG AND
ANIMATING IT

■ USING ARRAYS WITH THE GET
AND PUT COMMANDS

■ PUTTING WHERE YOU WISH

■ DIMENSIONING THE ARRAYS
CORRECTLY

■ 'TAKING PHOTOGRAPHS' OF THE
SCREEN

■ ANIMATION TECHNIQUES

The screen is cleared by Line 90 before
Lines 100 to 120 animate the bicycle. Line
110 PUTs the bicycle on the screen at a new
position each time through the FOR NEXT
loop.

DIMENSIONING THE ARRAYS
Whenever you want to use GET in a program
you'll have to DI Mension an array in which to
store the graphics information. To work out
the size of array needed, follow these steps:

1. Once you have designed your graphic,
preferably on graph paper, draw a rectangle
which completely encloses it. Count how many
individual pixels there are along the top of the
rectangle, and how many up the side. Now
multiply the two numbers together. This gives
you the number of pixels that the graphic
occupies. For example, the rectangle which
will enclose the bicycle is 18 pixels wide, by 12
pixels high. Multiplying them together, there
are 18*12 pixels-216 in all.

2. Next you need to work out how many
bytes in memory are needed to store that
number of pixels. In PMODEs 3 and 4 you'll
have to divide the number of pixels by 8, in
PMODEs 1 and 2 you'll have to divide by 16,
and in PMODE 0, by 32. As the bicycle has
been drawn in PMODE 4 you'll have to divide
216 by 8—giving the answer 27. The number
you use in the calculation has to be a whole
number of bytes, so this answer may have to be
adjusted. Just round it up to the next whole
number. No matter what the size of the
decimal, always round up, not down.

3. Work out the size of array you need to
DI Mension by dividing the number of bytes by
5. Always divide by 5 at this stage, no matter
which PMODE is being used. To return to the
example of the bicycle: there are 27 bytes to be
stored in the array, so 27/5 = 5.4. Again, if the
result of the division isn't an integer, you must
round up. For the bicycle, an array with 6
elements is needed—Line 20 says DIM BY(5)
because arrays start at element 0.

Here is a summary of the divisors you'll
need in order to work out the sizes of arrays in
your graphics programs:

To work out number of:
PMODE 	Bytes 	Arrays
4 	 8 	5
3 	 8 	5
2 	16 	5
1 	16 	5
0 	32 	5

GET can be used with any type of graphics on
the computer's high resolution screen no
matter which way they were created. It doesn't
matter whether you've set up a UDG, or used
PSET and PRESET, or DRAW—or any combin-
ation of the graphics commands—you can still
use GET to store the pictures in arrays for
PUTting back on the screen later.

To GET a graphic into any array you have
DI Mensioned you must tell the computer
where to find the graphic on the screen, and in
which array you wish it to be stored. Look
at this line from the bicycle program:

80 GET(1,0) — (18,11), BY,G

The numbers in the brackets are the screen
coordinates of diagonally-opposite corners of
the rectangle which encloses the graphic. It
doesn't matter which corners are specified, nor
in what order, but they must be diagonally-
opposite corners.

Notice that the area which has been stored is
not the whole UDG which you defined, but
only the part of it which actually contains the
images—because the bicycle doesn't occupy
the whole 24-pixel-wide block (three 8-pixel
UDGs). Using GET on the computer doesn't
limit you just to moving multiples of 8 x 8
pixels as on some other computers so you can
animate almost anything you like.

The next part of Line 80 after the screen
location, BY, tells the computer to store the
graphic in array BY, which has been
DI Mensioned in Line 20.

Finally, G stands for 'full Graphics detail'.
You can omit G in certain circumstances
(which will be explained a little later) but is
generally advisable to leave it in.

If you are setting up graphics as UDGs it's a
very good idea to POKE them into the top left
hand corner of the screen, as explained before,
because it makes the GET statement easier to set

up. Remember that when you POKE on to the
screen, the location of the image is not con-
tained in ordinary screen coordinates. But
because you have to GET the image from
particular screen coordinates you will have to
convert the memory locations you've POKEd
into, to the screen coordinate equivalent. It's
not very easy to do this conversion because it
will vary between PMODEs. POKEing into
memory locations at the start of the screen—
beginning at location 1536—makes the screen
location of the UDG very easy to work out—
the top left hand corner must be at coordinates
(0,0) and since you know the size of the
graphic, it's easy to work out the coordinates
of the bottom right hand corner of the UDG
when you GET it.

USING PUT
Once you used GET to store the graphic in
memory you should clear the screen using
PCLS before you PUT the graphic back on the
screen.

Here's the PUT line for the bicycle program:

110 PUT(K,90) — (K + 17,100), BY, PSET

The figures in the brackets, just as with GET,
give the coordinates of two diagonally-
opposite corners which define the area in
which you want to PUT the image. BY is the
array which now contains the bicycle.

The last part of the line is PSET. PSET tells
the computer to PUT the graphic on the screen
exactly as it was originally drawn, obliterating
whatever is already at the screen location you
desire.

There are other options, though. PSET can
be replaced by PRESET, OR, AND or NOT,
which allow you to manipulate the graphic.

PRESET tells the computer to PUT the
graphic on the screen in inverse form—in a
two-colour mode, the two colours will simply
reverse. In a four-colour mode used with
colour set 0, red will become green, and blue
will become yellow, and vice versa. In colour
set 1, orange will become buff, and cyan will
become magenta, and vice versa.

OR allows you to superimpose the graphic
stored in the array over whatever is already on
the screen. Both graphics will remain un-
altered, unlike PSET, where the original
graphic would have been obliterated.

The use of AND and NOT may seem a little
obscure. AND displays only the overlap be-
tween a graphic already on the screen and the
graphic which is being PUT onto that location.
NOT doesn't display any of the contents of the
array. All it does is to reverse the area on the
screen that the array is PUT on. To see why you
might need these commands, type in and RUN
the following program:

10 PMODE 4,1
20 DIM C(5),B1(5),B2(5)
30 PCLS
40 CIRCLE (7,7),7,1:PAINT(7,7),1,1
50 GET (0,0) — (14,14),C,G
60 PUT (0,0) — (14,14),C,NOT
70 GET (0,0) — (14,14), B2,G
80 PCLS1:SCREEN 1,0
90 LIN E(8,191) — (104,0), PRESET:

LIN E (24,191) — (120,0), PRESET:
PAINT(10,191),0,0

100 LINE(104,191) — (200,0),PRESET:
LINE(120,191) — (216,0),PRESET:
PAINT(110,191),0,0

110 FOR K =175 TO 0 STEP —10
120 X =14 + (175 — K)/2
130 PUT(X,K) — (X+ 14,K+ 14),C,OR
140 PUT(X+ 96,K) — (X + 110,K + 14),C,OR
150 FOR J = 1 TO 100:NEXT
160 PUT(X,K) — (X+ 14,K+ 14),B1,PSET
170 PUT(X + 96,K) — (X + 110,K + 14),B2,

AND
180 NEXT
190 GOTO 80

For an explanation of the method used for the
animation effect, see below.

If you look at what happens as the two balls
travel from bottom to top of the screen you'll
see some 'corners' appearing along the side of
the black stripes. The reason for this is that
you are trying to fit a rectangular graphic into a
slanted one. And every time the program tries
to PUT a block graphic on the screen to blank
out the ball's last position, the graphic overlaps
the stripe, creating the corners.

The ball travelling up the right hand stripe
causes no such problems. Using a combination
of PUT , AND and PUT ... , OR the corners
can be eliminated. First the ball is reversed on
the screen by Line 60, and then it is stored in
memory by Line 70. When the program
animates the ball, Line 140 PUTs a blank on the
screen on top of the stripe. This is a PUT... ,
OR so the last ball is wiped out by a precisely-
shaped blank. The reversed ball is PUT on the
screen using PUT ... , AND. The combination
of NOT with AND allows the ball to be PUT on
the screen by Line 170 with no overlap.

If you want to PUT a graphic on the screen
in a non-rectangular space—a circle or a
triangle in a circular or traingular hole,
perhaps—you can use this method. First draw
the object. PUT it back on the screen using PUT

, NOT and then GET it into an array. When
you want to display the graphic on the screen
later, use PUT .. . , AND.

WHEN TO LEAVE OUT G
Earlier you read that it was possible to omit G
from a GET statement. To understand when G

can be omitted you will have to know more
about the computer's screen display.

In PMODEs 1, 3 and 4 the graphics screen is
divided into 32 vertical columns, each eight
pixels wide, whilst in PMODEs 0 and 2 the
screen is divided into 16 columns, each 16
pixels wide. In whichever PMODE you use, the
width of the screen columns each correspond
to one byte in memory.

If the graphic you have designed occupies
an exact number of columns and you want to
move it a precise number of columns, you can
omit G from the GET statement. Without G,
whole bytes are stored in the array you've
named. If your graphic overlaps parts of
columns you will be needing to store parts of
bytes in the array. In other words, you need
some way of storing bits from the screen in the
array. This is the function of G.

If you leave out G when your graphic
overlaps screen columns a corrupted version of
your original graphic will be PUT on the screen.
If you have correctly omitted G then you must
also omit the PSET, PRESET, OR, AND or NOT
from the corresponding PUT. Omitting G,
then, will not allow you such great flexibility
with PUT.

ANIMATION USING GET AND PUT
GET and PUT are probably most useful when
you want to write a program using animated
graphics. You can use two main methods:

First, you may use an empty array, a blank,
to blot out the graphic before PUTting it back
on the screen somewhere else. Make sure that
the blank is the same size as your graphic and
you should have no problems. The technique
has been used a number of times in Games
Programming (see page 144, for example).

The second method, used in the bicycle
animation, uses a blank border of pixels round
the graphic. First decide how many pixels the
graphic is going to move in each step, and then
make sure that there are that number of rows of
blank pixels on the trailing edge of the graphic.
This means that the new graphic PUT on the
screen blanks out the previous graphic. If the
graphic moves from side to side and up and
down, say four pixels at a time, you need a
border of four rows of blank pixels surround-
ing the graphic. In the case of the bicycle, the
graphic is moved in one-pixel steps from left to
right across the screen, so a single row of blank
pixels had to be left along the left hand side of
the graphic when it was stored.

Finally, if you think that this has been
rather a lot to absorb, try designing some
graphics. Use GET and PUT to draw them
elsewhere on the screen, or animate them. The
most effective way to get to grips with PSET,
PRESET, AND, NOT and OR is to experiment.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Addressing 	 310-313
Adventure games

mapping 	 296-301
planning 	 264-268
routines 	 344-349

Anagram program 	 203
AND 	 35-36, 285-288
Animation 	 26-32, 350-352
Applications

bar charts 	 257-263
family finance 	 136-143
hobbies' files 	 46-53, 75-79
letter writer 	 124-128
typing tutor 	289-295, 328-332

ASCII code 	 314-320
Assembly language

66-67, 309-313, 321-327
Assignment statement 	66-67, 92
ATTR, Spectrum 	 68-69

B
Bar chart program 	 257-263
BASIC programming

arrays 	 152-155, 269-275
ASCII codes 	 314-320
debugging 	 334-338
decision making 	 33-37
how to PLOT, DRAW,
LINE, PAINT 	 84-91
inputting information 	129-135
PEEK and POKE 	 240-247
logical operators 	 284-288
merging programs 	 339-343
programmer's road signs 	60-64
READ and DATA 	 104-109
random numbers 	 2-7
refining your graphics 	184-192
screen displays 	 117-123
strings 	 201-207
structured programming 173-178, 216-219
the FOR ... NEXT loop 	16-21
using SIN and COS 	250-256, 302-308
variables
	

92-96
BEEP, Spectrum
	

230-231
Binary 	 38, 41, 44, 45, 113-116

negative numbers
	

179-183
Bit masking 	 288
Bitwise operators 	 288
Bridge, drawing a,Spectrum 	 108
Bubble sort program 	216-219
Byte, definition of
	

114

C
Cassette recorders, choice of

	
24

CHRS, Dragon, Tandy
	

26-27
CIRCLE
	

86-91
Circle, drawing a
	

255-256
Clock

drawing a
	

302-306
internal
	

69-73
Codeword program 	 315-318
COLOUR
	

87-90
Colour UDGs, Dragon, Tandy

	
248-249

Compass, drawing a
	

251-253
Control codes 	 319-320
Control variables 	 94
COS
	

250-256, 302-308
CPU
	

236-239
Craps program 	 63
Cursor, definition of
	

7
control codes, Commodores
	

123

D
Daisywheel printers

DATA
Debugging
Decimal

conversions from binary
	

38, 42
converting fractions into binary

	
114

Decision making 	 33-37
Degrees to radians,

conversion program
	

250,251
Delays in programs 	 17
DIMensioning an array 	152-153
Dot matrix printers 	 226-227
DRAW
	

85-91
Drawing letters, Dragon, Tandy

	
191-192

E
Egg-timer program 	 176-177
Ellipse, drawing a
	

256
EOR, Acorn 	 287-288
ENDPROC, Acorn
	

64
Errors 	 334-338

F
Family finance program 	136-143
Filing system program 	46-53, 75-79
Flow charts 	 173-178
FOR...NEXT loop 	 16-21

G
Games

adventure games
264-268, 296-301, 344-349

aliens and missiles
	

144-151
animation
	

26-32
arrays for games
	

155
bombing run program
	

161-167
controlling movement
	

54-59
firing missiles
	

55-58
fruit machine
	

36
guessing
	

3-5
levels of difficulty
	

193-200
maze game
	

68-74, 230-235
minefield
	

97-103
moving characters
	

54-59
random mazes
	

193-200
routines
	

8-15
scoring and timing
	

69-73
sound effects
	

230-235
space station game
	

144-151
visual explosions
	

161-167
GET
	

55-58, 132-135
GOSUB
	

62-64
GOTO
	

18-21, 60-62
Graphics

characters
	

38-45
creating and moving UDGs

	
8-15

drawing on the screen
	

132-133
drawing patterns
	

307-308
drawing pictures
	

107-109
explosions for games 	 161-167
fire-breathing dragon 	 80-83
frog UDG
	

10-15
instant embroidery 	 21
low-resolution 	 26-32
painting by numbers 	 19
refining your graphics
	

184-192
spiral pattern 	 307
sunset pattern
	

20
tank UDG
	

10-15
using GET and PUT,
Dragon, Tandy 	 350-352
using PLOT, DRAW,
CIRCLE, LINE, PAINT 	85-90
using SIN and COS 	250-256, 302-308

38, 42, 45, 156-160

IF ... THEN 	 3, 33-37
Indirection operators 	 247
INKEYS 	28-29, 54-55, 132-135
INPUT 	 3-5, 117-122, 129-135
INSTR 	 206

J
Joysticks

K
Keypress, detection of
Keywords, spelling of

L
Languages, computer

see Assembly language;
BASIC; Machine code

LEFTS
	

202-207
LEN
	

202-207
Letter writing program 	124-128
LINE, Dragon, Tandy
	

88-91
Logical operators 	35-37, 284-288
Lower case letters,

Dragon, Tandy 	 142

M
Machine code

advantages of
	

66
assembly language
	

309-314, 321-327
binary coded decimal
	

238
binary numbers
	

113-116
drawing dragon with
	

80-83
entering machine code
	

276-283
games graphics
	

38-45
hexadecimal
	

156-160
low level languages
	

65-67
machine architecture
	

236-239
memory maps
	

208-215
monitors
	

276-283
negative numbers
	

179-183
nonary numbers
	

111-112
number bases
	

110-116
ROM and RAM
	

208-215
sideways scrolling
	

321-327
speeding up games routines 	8-15

Mapping adventure games 	296-301
Maze programs 	68-75, 193-200
Merging programs 	 339-343
MIDS 	 202-207
Minefield game 	 97-99
Mnemonics 	 301

N
Negative binary numbers,

conversion program
	

180-183
Nonary numbers 	 111
NOT
	

286-288
Null strings 	 96
Number bases 	 110-116

0
Opcodes 	 67
Operators 	 35, 284-288
OR
	

35-36, 286-288

P
Paper for printers 	 228
Password program 	 133
PEEK
	

59, 101, 240-247
Peripherals, cassettes
	

22-25
joysticks
	

220-224

R
25, 44, 46, 208-215

2-7
193-200

40-44, 104-109
236-239
284-285

36
84

106-107
202-207

2-7
208-215

26-32, 107-109

S
SAVE 	 22-25
Scoring 	 97, 100-101
SCREEN, Dragon, Tandy 	40, 90
Screen drawing program 	132-133
Screen formatting 	 117-123
Scrolling backwards 	 282-283
Ship, drawing a, Dragon, Tandy 	191
Shortening programs 	 333
SID chip, Commodore 64 	 231
Simons' BASIC, Commodore 64 	87-88
SIN 	 250-256, 302-308
Snow scene, Commodore 64 	186-188
Sound effects 	 230-235
Sprite, Commodore 64 	14, 15, 168-172
Stack 	 237-239
STEP 	 17, 21
String functions 	 201-207
String variables 	 4-5, 95-96
STRINGS 	 98, 205
Structured programming

173-178, 216-219
Subroutines 	 62-63

TAB
	

117-122
Teletext graphics, BBC
	

28
Terminating numbers 	 34
Timing 	 97, 101-103
Two dimensional arrays
	

269-275
Twos complement 	 179-183
Typing tutor 	289-295, 328-332

U
UDG

animation. Dragon, Tandy 	350-352
colour UDGs, Dragon, Tandy 	248-249
definition of 	 8-15, 40-44
grids for 	 8-11
creating your own 	 38-45

V
Variables 	 3-5, 92-96, 104-108
VDU command, Acorn 	28-29, 70, 99
Verifying saved programs 	24-25
VIC chip memory locations

Commodore 64 	 172
H

227 	Hexadecimal

104-109 	Hobbies file
334-338

46-53, 75-79 printers 	 225-229
Pets survey program 	269-275
PLAY, Dragon, Tandy 	 234-235
PLOT 	 88-89
PMODE, Dragon, Tandy 	 90
POKE 	 101, 108-109, 240-247
Positioning text 	 117-123
PRINT 	 26-32, 117-123
Printer, choosing a 	 225-229
PROCedures, Acorn 	 64
PSET, Dragon, Tandy 	 13, 90-91

220-224 	Punctuation, in PRINT statements 119-123

	

54-55 	RAM

	

19 	Random numbers
Random mazes
READ

	

65 	Registers
Relational operators
REPEAT...UNTIL, Acorn
Resolution, high and low
RESTORE
RIGHTS
RND function
ROM
ROM graphics

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

J Practise your graphics skills and learn
some extra techniques with NEW IDEAS
FOR SCREEN PICTURES

Fill in the details of your adventure—
THE OBJECTS OF THE QUEST

:_../Avoid programming problems due to
misuse or misunderstanding, by adding
useful ERROR- TRAPPING ROUTINES

—1Put the finishing touches to your
TYPING TUTOR—plus a simple test

UFor the SPECTRUM, there's a
program to take the slog out of
ASSEMBLY

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

